
Educating for Mobile Computing:
Addressing the New Challenges

Barry Burd
bburd@drew.edu

Drew University
Madison, NJ, USA

João Paulo Barros
joao.barros@ipbeja.pt
Instituto Politécnico de Beja

Beja, Portugal

Chris Johnson
johnch@uwec.edu

University of Wisconsin, Eau
Claire

Eau Claire, WI, USA

Stan Kurkovsky
kurkovskysta@ccsu.edu

Central Connecticut State
University

New Britain, CT, USA

Arnold Rosenbloom
arnold@cs.toronto.edu

University of Toronto at
Mississauga

Mississauga, ON, Canada

Nikolai Tillman
nikolait@microsoft.com

Microsoft Research
Redmond, WA, USA

ABSTRACT

Computers that once filled rooms now fit in our pockets, and
unlike their predecessors, mobile computers abound. The
mobile industry is surging, with more smartphones being
sold to consumers than PCs [17]. But does the rise of mo-
bility impact computer science education? We claim that
computer science educators must seriously consider mobil-
ity as they examine their curriculum. In this working group
report, we offer a brief defense of why mobile computing be-
longs in our courses, summarize our survey of several hun-
dred courses which already incorporate it, and discuss how
educators might adopt it in their own courses. We hope
that this work will help computer science educators make
informed decisions about incorporating mobile computing
into their courses and provide examples of such integration
on different levels, ranging from individual projects or lec-
ture topics to mobile computing as a learning context for an
entire course.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education

Keywords

mobile computing, mobile curriculum

1. INTRODUCTION
We may be tempted to regard mobile computing as just

another stage in the evolution of hardware, with the foun-
dational core of computer science unchanged. In some ways,
the rise of mobility can be likened to the microcomputer rev-

olution, which put affordable and general personal comput-
ers in businesses and homes alike. Certainly, mobile devices
and personal computers have a similar democratizing effect:
computers are generally available to all ages, races, and in-
come classes. What sets mobile computing apart, however,
is the extent of its reach.

Consider mobility’s impact on our incoming students. In
2010, personal computers were in just 80% of homes in the
US [50]. In contrast, the number of mobile phones registered
in the US in 2011 was 104.6% of the country’s population.
In 2010, 96% of 18- to 29-year-olds owned cell phones [43].
Over 50% of cell phones are smartphones, devices that sup-
port advanced user interaction and general purpose compu-
tation [20].

Powerful and fully-programmable computers are in the
hands of most of our future students. Furthermore, these
computers play a significant role in their lives. Mobile de-
vices may be computers, but we view them as much more:
they are our connection to family and friends, they store
our experiences, and they deliver to us entertainment and
information wherever we need it. It’s no wonder that one in
five individuals claim they would rather spend a week shoe-
less than a week without their mobile phone [44]. Given
the ubiquity of these devices and our social attachment to
them, computer science educators have an unprecedented
opportunity to leverage student interest in computing.

Amongst groups long underrepresented in computer sci-
ence, mobility is having an especially marked effect. At the
end of 2011, the same year the global population reached
seven billion people, there were six billion connected mobile
devices, most of them in developing nations. 75% of His-
panics and blacks in the US own mobile devices [35]. The
number of women owning smart phones is at parity with the
number of men [20]. Mobility is proving to be an egalitarian
force, and its thoughtful incorporation into our curriculum
may restore diversity in our enrollments.

Mobility’s potential in recruitment is strong. But we,
as educators, may fear buying into the sensationalism sur-
rounding mobile computing. We may even categorize it as
many categorize game development: we’ll teach it to attract
students, but we do not believe it will have a long-term im-
pact on our graduates’ future careers. However, technology
companies are aggressively bolstering their mobile services,

51

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE-WGR’12, July 3-5, 2012, Haifa, Israel.
Copyright © 2012 ACM 978-1-4503-1872-3/12/07...$15.00.

with businesses generating 466,000 new jobs in mobile ap-
plication development since 2007 [38]. In just five years, the
mobile technology industry now employs four times as many
people as the game industry [10]. Mobility has infiltrated our
career fairs and is a major focus of recruiters [28].
As educators, we cannot discount the impact that mobil-

ity is having on our students before and after our time with
them. No matter the quality of education we may offer, we
risk being labeled irrelevant by both prospective students
and industry if we do not consider this new form of com-
puting in our curriculum. We’re better off heralding it. Its
success only reinforces our claim that computation plays an
intimate role in our way of life.
In this report we offer an analysis of the mobile computing

landscape, addressing computer science educators at all lev-
els. In section 2, we define the distinguishing features of mo-
bile computing that set it apart from traditional computing.
In section 3, we describe how educators are adopting mobile
computing into their curricula, based on our survey of sev-
eral hundred existing courses from across the globe. Finally,
in section 4, we offer educators who are looking at teach-
ing mobile computing an overview of several viable course
structures and mobile computing environments.

2. ESSENCE OF MOBILE COMPUTING
The numbers above suggest that mobile computing is im-

portant to consider, but what does an educator teach in a
course or unit on mobility? Are the changes we must make
to include mobility in our curricula only superficial? To an-
swer these questions, we must first pin down what we mean
when we speak of mobile computing.
While it is true that mobility builds on the foundational

elements of computer science that we already teach, mobility
also draws together the far reaches of our discipline, com-
bining elements of human-computer interaction (HCI), sys-
tems, algorithms, and software engineering under one com-
mon theme. Such a diversity of topics is typically addressed
only in project-based capstone courses.
Based on our survey of several hundred existing courses

on mobile computing, we describe what we see as the salient
features of mobility that should shape our courses:

Mobility and pervasiveness.
Users carry mobile devices everywhere: at bus stops, wait-

ing in lines, while getting their hair cut, on outdoor adven-
tures, in meetings, and so on. Devices tend to be owned
by individuals and software closely integrates with the dy-
namics of the owner’s changing location and activities, often
exposing events in the owner’s life to social networks. Per-
sonal area networks support social gaming, secure financial
transactions, and interaction with smart appliances. Cloud-
backed data and web services make computing portable.

User-interface and event-driven programming.
Commodity mobile devices are designed more for interac-

tion with the user and less for general purpose computation.
Accordingly, compared to software typically developed in
traditional computer science courses, mobile apps rely very
heavily on graphical user interfaces (GUIs). Most modern
GUI libraries are event-driven; the operating system asyn-
chronously awaits user input and triggers the developer’s

event-handling code. Developers must approach apps with
design in mind and accept the external locus of control.

Interruptions.
A user playing a game gets an incoming call. A driver

navigating a route passes through a long tunnel in which cell
connections are blocked. Modern mobile operating systems
more heavily orchestrate an app’s runtime lifecycle than do
their desktop counterparts. Mobile developers must consider
service interruptions and the fractured usage of their apps.
To account for interruptions, they must retain data until
focus and service is restored.

Sensor-based input.
Desktop computing relies primarily on a keyboard and

mouse for input, while mobile devices typically integrate
many more kinds of input hardware: touch, multitouch, ac-
celerometers, GPS, gyroscopes, magnetometers, proximity
sensors, front- and back-facing cameras, IR sensors, micro-
phones, and so on. This wide variety of sensors allows apps
to better incorporate the physical world. Interface designers
must carefully consider how to support the diverse set of
input devices used to interact with their apps.

Finite resources.
Mobile devices tend to have reduced memory, storage ca-

pacity, and execution speed compared to desktop computers.
Battery life is limited. The benefits of consuming resources
conservatively, employing low-complexity algorithms, keep-
ing background services lightweight, and limiting use of sen-
sors and intensive graphics are much more apparent on mo-
bile devices than in desktop computing.

Proximity to users.
Developers have straightforward access to a massive and

diverse user base through vendor and third-party applica-
tion distribution channels. Users rely on mobile devices to
record sensitive personal information, including email and
text messages, photographs, location, calendars, and con-
tacts. It is easy for a developer to release software that ac-
cesses and augments a user’s digital identity, therefore, the
developer must consider significant ethical issues, like how
privacy is managed and how the integrity of personal data is
preserved. The lowered distribution barrier also allows users
to easily communicate feedback to the developer.

Mobility is a natural arena for the coherent study of com-
puter science concepts, including traditional computer sci-
ence concepts and newly-emerging issues.

3. SURVEY OF MOBILE COURSES
To help us understand the impact of mobile computing on

computer science education, we surveyed nearly 200 courses
that covered some aspect of mobile computing. The courses
were identified through mailing list solicitations, literature
reviews, and web searches. The interested reader can find
the complete list of our resources at [14]. Though we ac-
cessed only courses with a publicly available syllabus or de-
scription, we found that mobile computing has been incorpo-
rated into computer science programs in various ways, from
a course strictly devoted to mobile computing, to a unit in
a course, to a context for motivating and engaging students.

52

Below we discuss some of the typical ways mobile computing
is incorporated into computer science learning environments.

3.1 As a New Standalone Course
Mobile computing can appear as a course in its own right,

for example, New York University’s v22.0480, iPhone Pro-
gramming [46], and Boston University Metropolitation Col-
lege’s MET683, Mobile Application Development [19]. Such
courses typically cover the design, development, testing, de-
ployment, and maintenance of mobile applications. In a
course for computer science majors (or majors in a related
field) students learn ways in which mobile application devel-
opment differs from more traditional desktop development.
In a hands-on course, students get practice using one or more
of the existing mobile platforms.
Current mobile application development courses typically

cover some combination of event-driven programming, XML-
based layouts, model-view-controller processing, touch sens-
ing, user experience issues specific to mobile devices, re-
source usage (constrained resources include screen size, mem-
ory, processing power, network connectivity), performance
issues, sensor programming, location-based services, 2-D and
3-D graphics, animation and media, security, persisting data,
testing and deploying a mobile app, and platform fragmen-
tation (including the support of differing hardware profiles).
Below we further detail the topics that tend to appear

in upper-division, single-term courses that focus on mobile
application development.

User Interfaces.
Many of the mobile courses surveyed have a section de-

voted to user interface design. Most courses include an in-
troduction to human-computer interaction and quickly move
on to the principles of user interface layout and enabling in-
terfaces to adapt to the screen resolution of the particular
device they are run on. Other topics addressed include a
discussion of interfaces that adapt to screen orientation and
differing hardware profiles. The iOS User Interface Guide-
lines [7] and the Android User Interface Guidelines [30] serve
as useful resources for students to investigate.
Part of the actual implementation of a custom user inter-

face typically involves writing event driven code connecting
user interface events with custom developer code, so the
event driven programming model is typically discussed at
this point. Depending on the platform used in the course, a
discussion of the model-view-controller design pattern may
be relevant as well.
All of the major platforms have 2-D and 3-D graphics

libraries supporting custom drawing. Many courses comple-
ment this with a discussion of color representation, pixels,
graphics contexts, and drawing.

Device I/O.
A key aspect of mobile development is the deep interaction

users have with their devices through a variety of sensors and
communication features. Many of the platforms use events
to signal input from touch, orientation, accelerometer, com-
pass, GPS, audio, and camera sensors, so most courses cover
callbacks and event-driven interaction in considerable detail.
Some courses include lab exercises or assignments on output
through text messages (SMS), phone calls, or Bluetooth de-
vices.
Though all major platforms allow developers to emulate

real devices, students who do not have access to physical
devices may not be able to investigate certain hardware fea-
tures, like multitouch, GPS, and telephony. To work around
this problem, some instructors maintain a pool of devices for
students to use.

Networking.
Mobile devices often are connected in some way to the

Internet, and mobile software regularly takes advantage of
this constant network connectivity. Networked applications
interact with information stored on the web and exchange
data with other computers on the Internet. For example,
mobile games store and retrieve high scores from a central
server. The server may also be used to facilitate multi-player
games, synchronizing game state for players across the globe.
An application might include an interactive map or continu-
ally share location information with other users running the
same application. Courses capitalize on these powerful sce-
narios by including a discussion on networking (client-server
architectures, protocols, and state machines). In addition
to general networking concepts, some instructors describe
cloud-based services and the graceful handling of breaks in
connectivity through caching.

Interruptions/lifecycle.
Mobile applications are typically executed, paused and

later resumed, as a result, the lifecycle of a mobile applica-
tion is more involved than that of a typical desktop appli-
cation. Topics in this section include application lifecycle
states, event notification, saving application state and re-
suming execution.

Fragmentation.
At present, the iOS mobile platform represents a collec-

tion of more than six different devices and three different
OS versions currently in wide use. Similarly, the Android
platform is run on numerous phones and tablets, with nu-
merous versions of the operating system in current use [40].
No matter the platform, a mobile application developer will
have to deal with their application running on different de-
vices with different device capabilities under different op-
erating system versions. To prepare students, instructors
may introduce asset management systems and methods of
abstracting a handful of version-dependent implementations
of an interface.

Resource-constrained Computation.
Compared to their desktop counterparts, mobile applica-

tions run under a relatively constrained environment. Mo-
bile applications run with relatively limited memory, pro-
cessor speed and storage. Users of mobile applications also
have significantly different expectations for the responsive-
ness of their applications and the impact the execution of
an application will have on the device as a whole. Users
expect mobile applications to respond immediately (or at
least consistently) to all user interactions. They expect that
a mobile application will not impact the execution of other
applications. They expect that applications will not crash
and that applications will not unnecessarily use the limited
space available on the device. Instructors may find it use-
ful to revisit discussions of time and space complexity from

53

earlier courses. Lessons on optimizing may include an intro-
duction to profiling.

Security.
Mobile applications run in an environment containing per-

sonal information about their users, whether it is contact
and calendar information, or location and call history data.
While this opens up a world of possible interesting applica-
tions, it also puts users at risk. This section of the course
discusses the principle of least privilege as well as the sand-
boxing and permissions model supplied by the various plat-
forms. Additional reading includes articles on recent mobile
malware [9] as well as iOS and Android security guides [8,
31].

Deployment.
One unit in a typical course covers mobile app stores.

Topics include packaging, signing, publishing, advertising,
and potentially profiting from a mobile application.

3.2 As a Context in Other Courses
The importance of context in computer science education

has long been recognized [26, 29]. Using a context allows
educators to focus on a subject that is important and famil-
iar to students while learning new concepts; it provides a
motivational tool and offers a wider playing field for experi-
mentation and engaging students in the educational process.
Using mobile computing as a motivational learning context
has a strong potential to improve student satisfaction [37]
and success in introductory computer science courses and
increase student motivation to stay in the major. In fact,
data from an IBM study [21] suggests that current students
might be much more interested in using their mobile devices
than PCs, so the role of such a context becomes even more
important.
In the section, we discuss separately mobile computing

used as a context in lower- and upper-division courses.

3.2.1 In Existing Lower-division Courses

Mobile devices have been integrated into computer sci-
ence curriculum in different ways. They have been used as a
motivating tool, increasing student interest in computer sci-
ence and other STEM disciplines [39]. They have been used
to teach computer literacy [36] and they have been used in
introductory programming [37] courses.
Many CS programs experience high enrollments in their

first introductory course, but witness a precipitous drop in
the number of students who stay in the program and con-
tinue on with subsequent courses [12]. While some students
may be mismatched with the program, many others decide
not to continue with studies in computer science because
they feel that the course material lacks connection with the
real world [13, 11]. Some students feel that the problems be-
ing solved in introductory courses are too contrived and lack
any relevance to real life; that their future work will involve
nothing but coding; and that there will be little room for
creativity and personal growth in their future computer sci-
ence careers. Additionally, a CS1 course is often the only CS
course that students from other majors are required to take
as part of their graduation requirements. Mobile computing
contexts can present the richness of CS as a creative, relevant
academic discipline to students early in their studies, and so,
could help decrease the attrition rates for CS programs. It

could also attract non CS students to the discipline, possibly
encouraging them to consider a second major or a minor in
CS.

We present two case studies which describe educators ex-
perience using mobile computing in first year/introductory
computer science courses.

Example Course 1.
A course described by Thiemann and Becker [51] intro-

duces first-year computer science students to mobile com-
puting. The course begins with teaching students the fun-
damentals of object-oriented programming along with the
basics of test-driven development. Once the students are
proficient with designing their own basic classes and using
the Eclipse IDE for designing GUIs, they are offered project
templates that focus on developing user interfaces for a num-
ber of simple Android applications. This gentle introduction
to the Android platform is followed by slightly more com-
plex projects that shift the focus from mobile interfaces to
writing Java code and running it on an emulator, as well on
the actual Android devices. Learning activities further em-
phasize code abstraction, as well as design elements, which
is supported by a simple framework for building interac-
tive games for Android. These activities help students learn
about callback methods, as well as access the device sen-
sors, such as accelerometer. Towards the end of the course
students learn about additional Android APIs, although the
paper does not provide specific details.

Example Course 2.
Kurkovsky and Defoe [24] describe a set of eight learning

modules designed for introductory computer science courses
using Java. These modules use mobile game development
as a learning context. Each learning module serves as an
opportunity to introduce students to an advanced CS topic,
such as algorithms, artificial intelligence, computer network-
ing, computer security, computer systems, database man-
agement, human-computer interaction, or software engineer-
ing, as well as to practice a fundamental topic, such as
arrays or inheritance. By demonstrating these and other
non-programming and diverse aspects of the discipline to
the students early, this approach may help dissolve a widely
popular misconception that “CS is all about coding.”

Each learning module consists of a small laboratory project
suitable for CS1 and beyond. Each project focuses on a sin-
gle mobile game, introduces one advanced topic, and rein-
forces one core concept. In addition to the project, deliver-
ables for each module include a set of instructional and sup-
plementary materials. These include an instructor’s man-
ual that provides a sample syllabus to go with each project
and guidelines for the adoption and adaptation of the cur-
ricular material. Instructional materials consist of lecture
notes, illustrations, references, and sample solutions, as well
as supporting materials such as project source code and doc-
umentation.

Evaluation results indicate that students in the test groups
were more engaged with the course in which the mobile game
development modules were presented and their motivation
did not decline as much as the control groups.

3.2.2 In Existing Upper-division Courses

Below, we discuss upper-division courses which address
mobile computing issues. Examples include the appearance

54

of mobile computing in courses on human computer inter-
action, game programming, and networking.

Human Computer Interaction.
The ACM Computing Curriculum recognizes the role of

mobile computing in today’s world as well as in the com-
puter science discipline. According to section 4.2 of the
ACM Computer Science Curriculum 2008 [25], building in-
terfaces for mobile systems is among many areas of practical
capabilities in which prospective graduates should have ex-
perience.
Mobile devices, by their very nature, offer a more interac-

tive experience. They are worn, held, touched, moved and
viewed by users in many ways, for many purposes, and in
many contexts. They offer a wonderful platform, motivating
students of the importance of the human-computer interac-
tion concern. In fact, most students quickly acknowledge the
fact that a good user interface experience is of the utmost
importance for mobile applications.
The 2010 offering of CS160, Introduction to Human Com-

puter Interaction [48] at the University of California, Berke-
ley, had a special focus on mobile applications. The course
focus is on user-centered design. Students were expected
to prototype, evaluate, and design a user interface particu-
larly targeting a mobile device. Topics covered by the course
included general HCI principles like the design cycle, eval-
uating the effectiveness of a design, affordances, conceptual
models, and UI design patterns. Additionally, the standard
HCI curriculum was supplemented with mobile topics such
as Android UI design patterns [27] and an investigation
of touch as a means for human, computer interaction [16]
(multi-finger vs multi-hand vs multi-user, stylus, direction
of approach etc.).

Games and Mobile Computing.
Current research indicates that mobile devices and mobile

games are a valuable teaching and learning tool [18] and as
a powerful tool used in augmented learning [32]. Mobile
game development also gives students the benefit of instant
gratification. Students can build graphical games on their
own mobile devices and play the games with their friends.
Casual games [33, 34] are the most popular kind of mo-

bile games, mostly due to the patterns of mobile phone us-
age. Casual games are characterized by extremely simple
gameplay (e.g., puzzles or card games) and generally ap-
peal to “casual consumers”who do not regard themselves as
“gamers.” Casual games are typically played in short bursts:
during breaks, while waiting in line, on public transporta-
tion, etc. Their rules are simple, and, unlike many console
games, they do not require a long- term time commitment
or any special skills. Most importantly, current studies indi-
cate that mobile gamer demographics are split fairly equally
between males and females [33, 10].
One of the substantial barriers to adopting game develop-

ment into the curriculum is the inherent complexity of de-
veloping a playable and well-designed game [15]. Due to the
relative simplicity of many mobile games, a playable game
can be developed within the timeframe of one semester by
many CS students with reasonable programming skills.
DePaul University’s GAM 386, Game Development for

Mobile Devices [45], has as its prerequisite a sequence of
Data Structures courses (in Java or in C++). The course
covers multiplayer game programming with a wireless inter-

net connection. Wireless and socket communication between
devices are discussed in detail.

Networking and Mobile Computing.
Mobile computing makes its appearance as a main topic

in some Networking courses. Such courses discuss the OSI
Model as seen through the lens of mobile networking. To put
these courses in perspective, the mobile development courses
discussed in section 3.1 focus mainly on the OSI application
layer and above as well as deal with orthogonal issues such as
interacting with mobile device sensors, user interface design
and app store ecosystems. Mobile networking courses focus
almost exclusively on the seven layers of the OSI Model,
ignoring the orthogonal mobile development topics.

Below we briefly describe two example mobile networking
courses.

The University of California, Berkeley, offers CS294-7,
Wireless Communications and Mobile Computing [49], a
graduate course that covers topics such as radio spectrum,
cellular networks, voice communications, mobile data, and,
satellite networks. Course lectures focus on the physical,
data link, network and transport layers of the OSI Model.
Readings are taken from the research literature and projects
include topics such as Mobile IP Security and Service Bea-
coning in Cellular Wireless Networks.

Washington University offers CSE574S, Advanced Topics
in Computer Networking [47], which covers all 7 levels of
the OSI Model as they apply to mobile computing. A small
sampling of topics covered by this course include the wireless
physical layer, WiMAX, 3G and 4G networks, mobile IP,
and security.

3.3 In Outreach
As discussed in section 1, mobile computing has obvious

strengths as a motivational factor to attract students to com-
puter science. Hence, it is a popular technology for outreach
programs. While outreach isn’t a course or part of computer
science curriculum, in our survey we found many instances
of educators putting on camps and workshops using mobile
devices [51, 42, 1].

MIT App Inventor [42, 4] is especially interesting as it
offers a visual programming environment for Android-based
development. The users can build programs by composing
pre-defined blocks similar to those found in the Scratch pro-
gramming environment [6]. App Inventor is included in the
comparison of platforms in section 4.

4. SUGGESTIONS FOR ADOPTION
Mobile computing is a rapidly changing field with sev-

eral popular and mostly incompatible platforms. Educators
interested in adopting mobile computing into their courses
may wonder how to navigate this complexity, so we offer
here a breakdown of the current platform choices and course
structures. This information is subject to change as new
technologies and vendors emerge.

4.1 The issue of platform dependence
With respect to platform, there are three possibilities an

educator may use to structure a course: teach one platform,
teach multiple platforms, or, teach principles without regard
to any particular platform. We consider each of these pos-
sibilities in turn.

55

Note that the word “platform” can have a few different
meanings. “Platform” may refer to a particular hardware
category (for example, iPhone versus Android phones). “Plat-
form”may also refer to a mobile operating system (for exam-
ple, iOS versus Android). “Platform” may also refer to the
programming language or development environment used to
create mobile software (for example, HTML5 versus Java).
In many contexts, the distinction isn’t critical. For an in-
structor, a “platform” is one of the alternatives for the hard-
ware or software to use in a course. In this report, when
it’s useful to make the distinction, we refer to the “client
platform” (which includes the hardware and the OS) and
the “development platform” (which includes the program-
ming languages, the IDEs, and other software development
tools).

4.1.1 Teach one platform

Advantages.
Students get concrete experience with a real system. The

concreteness provides a reliable way to test the students’
understanding. (That is, you test by having students write
code that works, or doesn’t work.) Experience with a real
system gives students a clear idea of the course’s goals and
helps students believe that the things they’re learning are
immediately applicable. Students can learn details about
the entire app-creation lifecycle, from the formulation of an
idea to publishing the app on a particular market.

Disadvantages.
Platforms change quickly. The tools that you teach one

semester are likely to change (in either minor or major ways)
by the following semester. Changes in these new platforms
are sometimes not backward compatible.
Students might not own the required hardware. (For ex-

ample, it might not be the case that each registered student
has an Android phone or an Android tablet. For a course
whose platform is iOS, students might have iPhones but not
have an Apple computer, which is required for iPhone de-
velopment.) Even if each student has an appropriate mobile
device, students might have different makes and models of
devices. Of course, students can use emulators and simula-
tors to test their code, but the emulator/simulator experi-
ence isn’t as rich as testing on an actual mobile device.
If some registered students don’t have hardware that’s ap-

propriate to a platform-specific course, the institution can
supply devices for the students’ use. Needless to say, this in-
volves some expense and some bureaucratic/administrative
overhead. Fortunately, some companies are willing to lend
or donate equipment to help defray costs. For example, RIM
has an academic program in which the company lends de-
vices for student use [41]. Microsoft also lends Windows
phones for academic use [23]. In addition, some phone ven-
dors donate devices for use by students.

4.1.2 Teach Multiple Platforms

Advantages.
This approach is parallel to the age-old idea of teaching

many programming language paradigms in a computer sci-
ence curriculum, and has advantages/disadvantages which
are similar to those in the multi-paradigm approach.
In a multi-platform course, students learn (perhaps in an

anecdotal fashion) which features are particular to a plat-
form, and which features are common to several platforms
(and thus are more fundamental). Students are in a better
position to critique a specific platform’s features (so they can
begin to think about the design of mobile app platforms).
Students see that the decisions made by platform designers
aren’t cast in stone. (Students see this “not-cast-in-stone”
concept in other computer science courses, but the idea is
always worth repeating.)

Disadvantages.
There’s one big difference between the multi-paradigm

tradition in computer science and a multi-platform mobile
development approach: An institution typically implements
the multi-paradigm approach by teaching different paradigms
in different courses. In only one course devoted to develop-
ment in several platforms, time is more scarce so depth-of-
coverage for each platform is bound to be sacrificed.

4.1.3 Teach Principles Only

One might suggest that mobile computing be taught with-
out reference to any platform.

Advantages.
The instructor doesn’t have to worry about specialized

hardware. The course material is not likely to become ob-
solete very quickly (although the broad concepts of mobile
computing are still in some state of flux). Also, a course of
this kind is market-agnostic.

Disadvantages.
At this point in the development of mobile computing,

it’s difficult to separate the principles from the realities of
the hardware. Students with some experience developing
software for desktop computers can benefit from a purely
theoretical, hands-off course involving traditional computing
principles. But no first-hand experience of the challenges of
developing for mobile devices, a course based purely on prin-
ciples isn’t likely to resonate with students. In any course
(mobile or not), concrete examples help students remem-
ber concepts. Without an underlying platform, if a student
misinterprets a statement about a general concept, this mis-
understanding isn’t highlighted by a compiler or an app’s
incorrect behaviour.

A principles-only course eliminates the hazards of teaching
to one or more platforms, but our survey of existing courses
led us to no principles-only courses.

4.2 Notes on Existing Platforms
We now consider each platform in turn, comparing them

by language, development environment, software and hard-
ware requirements as well as application distribution chan-
nels and cost. We supplement this with a discussion of
the advantages and disadvantages of each platform, with a
special emphasis on using the platform for educational pur-
poses. The reader should be cautioned that this discussion,
while valid at the time of this writing, may become dated
as the state of devices and platforms evolves. Having the
discussion is, nevertheless, useful. A summarizing table of
this discussion can be found in appendix A.

Note that in some cases, a client platform and devel-
opment platform are intimately connected. For example,
Objective-C is the primary language for developing iPhone

56

apps, App Inventor projects compile specifically to Android
runtime packages, and TouchDevelop (a development plat-
form) runs exclusively on Windows Phone (the client plat-
form). In these cases, we use the term “platform” liberally,
referring to both the client and development platforms at
once.

Android.
Android development’s lingua franca is Java, a primary

language of instruction for many computer science depart-
ments. So many students don’t have to learn a new pro-
gramming language in order to begin mobile app develop-
ment for Android. (Note: Android’s Java is different from
Oracle Java. Android uses Apache Harmony, and compiles
source code for use on its own Dalvik virtual machine. But
for most students who are starting out in mobile application
development, the differences between Oracle Java and An-
droid Java aren’t noticeable.) Also, the heaviest tooling for
Android development uses Eclipse plug-ins, and Eclipse is a
commonly used IDE in educational institutions.
Android is a (mostly) open ecosystem, so students have

quite a bit of flexibility. Android devices come from many
different vendors, so the devices are competitively priced.
For a small, one-time payment, students can join the An-
droid market, now called Google Play [2] and publish their
apps without going through a referee process. More ad-
vanced students can study the internals of Android with
variants such as CyanogenMod.

iOS.
Development for iOS can be both simpler and more re-

strictive. A developer targeting the iOS platform need only
consider a few different devices (Apple iPhone, iPod and
IPad), and OS versions. In comparison, an Android devel-
oper may need to consider their applications performance
on potentially hundreds of different devices and OS versions.
iOS development usually means using the Objective-C pro-
gramming language under Xcode, the Apple IDE that only
runs on Apple hardware. This dependency on Apple hard-
ware is probably the main drawback when choosing iOS as
a platform for teaching mobile development. On the plus
side, once given the hardware, the software is free and ed-
ucational institutions can apply for a licence allowing their
faculty and students to upload software to iOS devices.
Another possible disadvantage is the use of Objective-C,

in the sense that, for most students, it will be a new lan-
guage. Yet, this aspect is often overemphasized: in fact,
Objective-C shares a large part of its object-oriented nature
with Java, C# and C++. It also has the same main concepts
that students already know from those languages. One ma-
jor difference is the absence of garbage collection on the iOS
platform. It is possible to use automatic reference counting
(ARC), which allows for a much simpler transition from lan-
guages with garbage collection, as Java and C#. One could
argue that making students worry and learn about memory
allocation is an important part of their studies. It is interest-
ing to note that in July 2012, Objective-C became the third
language in the TIOBE Programming Community Index, in
front of C++ and C#, and only surpassed by C and Java.
In the same index, on July 2007, Objective-C ranked 46th.
This extraordinary rise in popularity is clearly due to iOS
development. The graph on the TIOBE site dramatically
illustrates the rise of Objective-C. Hence, development for

iOS can be seen as a motivator to teach and learn an ad-
ditional programming language. It also offers a meaningful
context to present and discuss memory management using
a modern operating system and programming environment.

Windows Phone and Windows Runtime.
Programming for Windows Phone 7 can be done in any of

the most popular .NET languages (C#, Visual Basic, F#).
The new Windows Runtime (WinRT) programming model
for Metro-style apps is available to a variety of supported
languages and runtime environments, including C++, .NET
languages, and HTML5. Visual Studio 2010 (for Windows
Phone 7 development on Windows Vista or better) and 2012
(for Windows Runtime development onWindows 8) are avail-
able for free as Express editions. For a small annual fee,
apps can be published in the Windows Phone Marketplace
and the Windows Store. With Microsoft Dreamspark [22]
project, students and educators can get free access to the
Professional editions of the tools and they can get the an-
nual fee waived to publish Windows Phone 7 apps. Apps
created for Windows Phone and the Windows Runtime run
on a variety of devices produced by many vendors.

BlackBerry.
The BlackBerry OS offers flexibility because it supports

several development platforms including C/C++ (the native
platform), HTML5, Adobe AIR ActionScript, BlackBerry
Java, and the Android Java SDK. Apps written in any of
these development platforms can be packaged for use on a
BlackBerry device. In addition, through Research in Mo-
tion’s BlackBerry Academic Program [41], instructors can
get loaner devices for use by students in mobile app devel-
opment courses.

HTML5, JavaScript, and CSS.
Mobile devices are now commonly equipped with power-

ful, HTML5-compliant web browsers making the web browser
an ideal platform for mobile development. (For brevity, we
frequently use the term “HTML5” to mean the HTML5,
JavaScript, and CSS combination.) Modern HTML5-capable
browsers present a JavaScript API capable of communicat-
ing sensor information, storing state locally, playing audio
and video, rendering 2D and 3D graphics, communicating
with servers, and handling touch, accelerometer, GPS and
compass events. They are also capable of caching applica-
tions client side, making them available to a user even when
offline. At present, though browsers typically do not have
access to all device features (such as contacts and camera),
they do give JavaScript applications access to a subset suffi-
cient for the development of compelling mobile applications.
Additionally, this platform, if sufficiently standardized, leads
to the possibility of near universal application deployment.
Mozilla’s FirefoxOS project, formerly Boot to Gecko, rep-
resents the extreme of this approach, making the browser
itself the platform for all device applications. On a Fire-
foxOS phone, the calendar, mail and dialer applications are
all written using HTML5.

Below, we consider the advantages and disadvantages of
HTML5 as a platform for a mobile development course.
While mobile development using other platforms may re-
quire significant instructor and student preparation, HTML5
has a readily available development, deployment and run-
time environment. One can build mobile applications using

57

any text editor and run them on any HTML5 compliant
browser, on the desktop, on a tablet or on a mobile phone.
This platform allows students to immediately deploy and
update their projects on any web server, and so, be immedi-
ately consumed by family and friends, without the coopera-
tion and constraints inherent in app store ecosystems. Addi-
tionally, accessing hardware on the mobile device is achieved
through a JavaScript API. For example, touch, accelerom-
eter and GPS are provided to applications via rich objects
delivered to callback functions. This familiar model is used
by Javascript developers writing everything from interactive
web forms to AJAX applications. Finally, by leveraging stu-
dent familiarity with JavaScript and HTML, Mobile devel-
opment with HTML5 can easily be added to an existing web
development course, instead of being added as an indepen-
dent course.
The disadvantages of HTML5 as a platform include frag-

mentation, that is, the degree to which browsers support the
current HTML5 standard. Additionally, as stated above,
the HTML5 standard is currently missing support for many
standard device features, for example, access to contacts and
calendar and access to multimedia sensors. HTML5 does
promise to include support for more device features in the
future. In general, a user’s experience depends on both the
devices capabilities as well as the degree of HTML5 support.
A few websites [5, 3] list current devices, operating systems
and browsers and the degree of HTML5 support they pro-
vide. Some current, well supported platforms include the
iPad 2, iPod 4, iPhone 3GS with recent iOS (5.1) and Sa-
fari. Samsung Galaxy Tab 10.1, Samsung, Galaxy Nexus
running ICS and Firefox Mobile 10 or Chrome.

Apache Cordova (PhoneGap).
With the aforementioned HTML5, JavaScript, and CSS

approach, a developer creates a web page that’s optimized
for use on a mobile device. The user runs a web app in
a browser. But with Cordova, the developer’s HTML5,
JavaScript and CSS code is cross-compiled into platform-
specific code (for example, into Android Java or iOS Objective-
C). As a result, students can write one app, deploy the app
natively to more than one device, and observe the differences
in the native behavior on each of the devices.

MIT App Inventor.
App Inventor [4] is a visual blocks-oriented development

platform for Android. App Inventor uses the jigsaw-puzzle-
piece programming model in Scratch [6]. App Inventor’s
heritage is strong on teaching. In fact, App Inventor is simi-
lar to Logo and Alice in that students learning App Inventor
focus on logic without having to deal with syntax.
Apps developed using App Inventor can be published on

Google Play, but some features available to Android Java
developers are not available in a project that’s created using
App Inventor [52]. For example, App Inventor Apps have
limited total size, limited access to the device, limited access
to the web, and, code is strongly tied to specific components,
preventing the creation of abstract code.

TouchDevelop.
TouchDevelop [23] is a programming environment that

does not require a separate development machine such as
Mac or PC, but it runs directly on mobile devices (currently,
Windows Phone). By merging the development and exe-

cution environments, many complexities in the traditional
mobile app development model — which is basically cross-
platform application development — are bypassed. While
TouchDevelop’s programming language is similar to other
traditional procedural imperative languages, it uses a semi-
structured code editor that has been specialized for touch-
screens as the main input device. Programs can use many
sensors and data present on mobile devices. The result-
ing simplicity of the mobile development environment make
TouchDevelop suitable for introductory computer science
courses. Apps development using TouchDevelop can be shared
via the TouchDevelop script bazaar, and also published to
the Windows Phone Marketplace using the regular publish-
ing procedure.

4.3 Assignment Ideas
As part of our research, we sent out a call for instructors to

share their interesting and nifty mobile assignments. Below
we provide a summary of these as well as some that were
found in other mobile courses we reviewed. When appro-
priate, we include the assignment’s platform details. Links,
where available, are provided at [14]. The reader may like
to use the ideas presented in the assignment as is or move
them to an alternate platform.

Pong.
Create a game in which the user drags a paddle to meet

with an oncoming object.
This assignment involves understanding the game loop,

drawing and rendering the scene so that it updates grace-
fully in real time, and responding to touch events when the
user moves the paddle. Rudimentary collision detection is
necessary to determine when the ball hits the paddle. Also,
sound generation can enhance the feel of the game.

Auto Messaging.
Report sensor events via multiple channels. Part one of

the assignment has students develop code which sends SMS
messages to recipients, reporting the state of one (or more) of
the device’s sensors. Later, the project incorporates a text-
to-speech engine to make phone calls reporting the state of
the sensors.

This assignment involves using the platform’s API to gather
sensor data. The student also initiates outgoing communi-
cation (voice or text).

Programmatic Social Networking.
Present a mobile interface allowing a user to create, read,

and update information using the Twitter API or the Face-
book API.

This assignment makes significant use of UI design prin-
ciples. The student is also immersed in the use of public
APIs.

Maze.
Create a game in which the player navigates from the

inside to the outside of a maze. (Create a new maze each
time the user plays the game.)

This project requires touch-sensing and real-time draw-
ing/rendering. While it’s not strictly a mobile topic, cre-
ating a maze can be an interesting graph/recursion exer-
cise. Students can explore other input modalities such as

58

device orientation (tilting) to navigate the maze, and the
accelerometer to jump over obstacles in the maze.

E-Reader.
Create an e-reader with attention to bookmarking and

searching. Later, add the ability to rate and share books.
This assignment emphasizes usability issues to make the

reading experience as seamless as possible. The rating and
sharing aspects of this assignment involve social networking
and the use of public APIs. Alternatively, this assignment
can appear in a web development course, with rating and
sharing implemented as a custom web service.

Find the Duck.
Students create an application with multiple “users” and

multiple “ducks,” the targets to find. Users then physically
race to the physical location of the ducks with their mobile
devices. Each device displays the user’s position on a Google
MapView under Android and indicates the user’s distance
to a nearby target by displaying a “hot,”“warm,” or “cold”
message. The application determines if the user is located
at the target, and if this user is the first to arrive at the
target. An additional requirement is to have the application
determine if at least 2 other users (3 unique users) have
checked into a particular area recently and, if so, return a
Google StreetView image as a hint.
This assignment exposes students to location services as

well as public API, web services and mapping. It also raises
issues of concurrency and mobile communication, depending
on the depth to which students wish to explore the appli-
cation. Finally, this assignment raises questions about the
ethics of user location tracking.

Geolocation via Access Points.
This application uses the beacon signals transmitted by

neighbouring wireless access points to implement geoloca-
tion. First, the application measures the signal strength of
the mobile device to nearby wireless access points. Next,
the application submits these to a geolocation web services
which determines the approximate physical location of a mo-
bile device. Finally, the mobile application uses the result
to request a photographic image of the scene that should be
observable from that location.
In addition to the issues in the “Find the Duck” assign-

ment, this assignment involves the use of access points and
the handling of images from a web service.

WalkAbout.
Allow users to record their GPS location information as

they travel. While the application records the user’s GPS
data, it displays it back to the user in the form of a path
drawn on top of a Google Map. While recording data, the
user can launch a Camera activity that will capture and
store pictures on an SD-Card. When finished recording, the
application gives the user the option of storing the current
GPS data as a private application file to be loaded and dis-
played at a later time.
In addition to other geolocation issues, this assignment in-

volves using the device’s camera and writing to the device’s
local storage.

The “Me” App.
Display a virtual identity card, showing the owner’s photo

and vital statistics. Customize the identity card’s layout
depending on the device’s orientation: a horizontal side-by-
side flow, or a vertical top-to-bottom flow. Load the photo
according to device pixel density. Label the data according
to the phone’s locale. In a follow-up assignment, add editing
capabilities.

This assignment focuses on the UI (in particular, respond-
ing to changes in the device’s orientation with changes in the
UI). The student also gets practice supporting more than
one locale.

Parking Space Finder.
Display a webcam-provided view of a parking lot, with

current empty spaces highlighted. The webcam server ac-
tively scans for open spaces and communicates a marked-up
image to mobile clients.

This assignment highlights computer vision and its related
heuristics in order to determine which spots are open, and
which are already taken.

AppRater.
Develop an application that suggests other apps for users

to download and try. The purpose of the application is to
share fun and interesting apps with other users. The users
can then rate the downloaded apps.

Among other things, this assignment involves heuristics to
work with people’s’ preferences. The student must decide on
a method for classifying apps, and on methods for determin-
ing which apps are similar to other apps. As written, this
assignment also focuses on the Android API, including post-
ing to the notification bar, the idea of an Android Service
and using Intents.

Top Places.
This assignment has students build an iPhone application

which uses the Flickr API to present users with a list of
popular Flickr photo spots. Users can then click on any
of these popular spots and be shown photos taken at that
location.

This assignment involves the use of a web service. In
addition, students must think carefully about the user ex-
perience in browsing and marking places and photos. At the
API level, this assignment focuses on MVC and the use of
components, for example, the iOS UITableView and UITab-
BarController.

5. CONCLUSION
The widespread use of mobile devices by consumers is

changing the face of computing and of computer science.
Mobile computing offers both challenges and opportunities
for computer science educators. The challenges include the
ongoing need to keep up with changes in the field. Curric-
ula must be revised, courses must be created, and educators
must prepare to teach new material.

Another challenge includes the problems posed by the
need for new hardware. The last wave of academic hardware
enhancement was in the mid-1980s when personal comput-
ers hit the scene. Mobile devices are much cheaper now than
personal computer were in the mid-1980s. But, unlike the

59

mid-1980s, the world’s economies are weak and academic
budgets are very tight.
Adding to these challenges is the fact that innovations

in mobile computing have not reached a plateau. Today’s
investment in technology and training can quickly become
obsolete.
But the opportunities outweigh the challenges. Mobile

devices bring computing to the masses in a way that even
personal computers cannot. And mobility sparks new in-
terest in the economy’s tech sector. Public awareness of
their choices in consumer electronics purchases is at an all-
time high. Opportunities for computer science educators
include new computer science concepts, new ways to teach
long-standing computer science concepts, and new ways to
engage students.
We have suggested a workable definition of mobile com-

puting, discussed some of the ways that mobile computing
appears in current courses, outlined the topics covered in a
mobile application development course, discussed the moti-
vating influence the mobile platform has on our undergrad-
uate students, provided guidance on platform choices for
educators, and provided a few nifty assignments. We have
provided a frame of reference for future discussions of mobile
computing in computer science education as well as guidance
for educators interested in integrating mobile computing in
their courses.

Acknowledgements

We thank Paul Hegarty, David Janzen, James Reed, Jonathan
Engelsma, William Mongan, and Chris MacDonald for the
assignment ideas in section 4.3.

6. REFERENCES
[1] Alabama Summer Computer Camps.

http://outreach.cs.ua.edu/camps. [Online; accessed
1-August-2012].

[2] Google play store. http://play.google.com. [Online;
accessed 1-August-2012].

[3] The HTML5 test. http://html5test.com. [Online;
accessed 1-August-2012].

[4] MIT App Inventor.
http://www.appinventor.mit.edu. [Online; accessed
1-August-2012].

[5] Mobile HTML 5. http://mobilehtml5.org. [Online;
accessed 1-August-2012].

[6] Scratch. http://www.scratch.og. [Online; accessed
1-August-2012].

[7] Apple, Inc. iOS human interface guidelines.
http://developer.apple.com/library/ios/

#DOCUMENTATION/UserExperience/Conceptual/

MobileHIG/Introduction/Introduction.html.
[Online; accessed 21-July-2012].

[8] Apple, Inc. iOS security. http://images.apple.com/
ipad/business/docs/iOS_Security_May12.pdf.
[Online; accessed 31-July-2012].

[9] Lucian Armasu. Android less secure? ha! iOS 5 seems
to be full of security flaws.
http://www.androidauthority.com/android-less-

secure-ha-ios-5-seems-to-be-full-of-security-

flaws-31326. [Online; accessed 31-July-2012].

[10] The Entertainment Software Association. Essential
facts about the computer and video game industry.

http:

//www.theesa.com/facts/pdfs/ESA_EF_2008.pdf.
[Online; accessed 21-July-2012].

[11] Theresa Beaubouef and John Mason. Why the high
attrition rate for computer science students: some
thoughts and observations. SIGCSE Bull.,
37(2):103–106, June 2005.

[12] Jens Bennedsen and Michael E. Caspersen. Failure
rates in introductory programming. SIGCSE Bull.,
39(2):32–36, June 2007.

[13] Maureen Biggers, Anne Brauer, and Tuba Yilmaz.
Student perceptions of computer science: a retention
study comparing graduating seniors with cs leavers. In
Proceedings of the 39th SIGCSE technical symposium
on Computer science education, SIGCSE ’08, pages
402–406, New York, NY, USA, 2008. ACM.

[14] Barry Burd, João Paulo Barros, Chris Johnson, Stan
Kurkovsky, Arnold Rosenbloom, and Nikolai Tillman.
Mobile course survey. http://www.edu4mobile.org.
[Online; accessed 21-July-2012].

[15] Bary Burd, John Goulden, Brian Ladd, Michael
Rogers, and Kris Stewart. Computer games in the
classroom, or, how to get perfect attendance, even at 8
am. SIGCSE Bull., 39(1):496–496, March 2007.

[16] Bill Buxton. Multi-touch systems that i have known
and loved. http:
//www.billbuxton.com/multitouchOverview.html.
[Online; accessed 1-August-2012].

[17] Canalys. Smart phones overtake client PCs in 2011.
http://www.canalys.com/newsroom/smart-phones-

overtake-client-pcs-2011, 2012. [Online; accessed
21-July-2012].

[18] Ching-Chiu Chao. An investigation of learning style
differences and attitudes toward digital game-based
learning among mobile users. In Proceedings of the
Fourth IEEE International Workshop on Wireless,
Mobile and Ubiquitous Technology in Education,
WMTE ’06, pages 29–31, Washington, DC, USA,
2006. IEEE Computer Society.

[19] Boston University Metropolitan College. MET CS683:
Mobile application development.
http://www.bu.edu/csmet/cs683/. [Online; accessed
1-August-2012].

[20] The Nielsen Company. America’s new mobile
majority: a look at smartphone owners in the u.s.
http://blog.nielsen.com/nielsenwire/?p=31688,
May 2012. [Online; accessed 21-July-2012].

[21] International Business Machines Corp. Ibm study
finds consumers prefer a mobile device over the pc.
http://www-

03.ibm.com/press/us/en/pressrelease/25737.wss.
[Online; accessed 1-August-2012].

[22] Microsoft Corp. Dreamspark.
http://www.dreamspark.com. [Online; accessed
1-August-2012].

[23] Microsoft Corp. Touchdevelop.
http://www.touchdevelop.com. [Online; accessed
1-August-2012].

[24] Delvin Defoe, Stan Kurkovsky, and Emily Graetz.
Mobile game development projects for introductory cs
courses: tutorial presentation. J. Comput. Sci. Coll.,
26(4):93–94, April 2011.

60

[25] ACM Interim Review Task Force. Computer science
curriculum 2008: An interim revision of cs 2001.
http://www.acm.org/education/curricula. [Online;
accessed 1-August-2012].

[26] Andrea Forte and Mark Guzdial. Computers for
communication, not calculation: Media as a
motivation and context for learning. In Proceedings of
the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences
(HICSS’04) - Track 4 - Volume 4, HICSS ’04, pages
40096.1–, Washington, DC, USA, 2004. IEEE
Computer Society.

[27] Google Inc. Android UI design patterns.
http://www.google.com/events/io/2010/sessions/

android-ui-design-patterns.html. [Online;
accessed 1-August-2012].

[28] Mark Green and Michele Perras. Mobile computing
research and education: bridging the gap between
academia and industry. In Proceedings of the 2010
Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’10, pages 407–408,
Riverton, NJ, USA, 2010. IBM Corp.

[29] Mark Guzdial. Education: Teaching computing to
everyone. Commun. ACM, 52(5):31–33, May 2009.

[30] Google Inc. and Open Handset Alliance. Android
design.
http://developer.android.com/design/index.html.
[Online; accessed 21-July-2012].

[31] Google Inc. and Open Handset Alliance. Android
security overview. http:
//source.android.com/tech/security/index.html.
[Online; accessed 31-July-2012].

[32] Eric Klopfer. Augmented Learning: Research and
Design of Mobile Educational Games. The MIT Press,
2008.

[33] Elina M. I. Koivisto. Mobile games 2010. In
Proceedings of the 2006 international conference on
Game research and development, CyberGames ’06,
pages 1–2, Murdoch University, Australia, Australia,
2006. Murdoch University.

[34] Stan Kurkovsky. Making the case for mobile game
development. In Proceedings of the 14th annual ACM
SIGCSE conference on Innovation and technology in
computer science education, ITiCSE ’09, pages
401–401, New York, NY, USA, 2009. ACM.

[35] Gretchen Livingston. Latinos and digital technology,
2010. Pew Hispanic Center, February 2011.

[36] Qusay H. Mahmoud and Allan Dyer. Integrating
blackberry wireless devices into computer
programming and literacy courses. In Proceedings of
the 45th annual southeast regional conference,
ACM-SE 45, pages 495–500, New York, NY, USA,
2007. ACM.

[37] Qusay H. Mahmoud and Allan Dyer. Mobile devices in
an introductory programming course. Computer,
41(6):108–107, June 2008.

[38] Michael Mandel. The app economy. TechNet,
February 2012.

[39] David Metcalf, Marcelo Milrad, Dennis Cheek, Sara
Raasch, and Angela Hamilton. My sports pulse:
Increasing student interest in stem disciplines through
sports themes, games and mobile technologies. In

Proceedings of the Fifth IEEE International
Conference on Wireless, Mobile, and Ubiquitous
Technology in Education, WMUTE ’08, pages 23–30,
Washington, DC, USA, 2008. IEEE Computer Society.

[40] OpenSignalMaps. Android fragmentation visualized.
http:

//opensignalmaps.com/reports/fragmentation.php.
[Online; accessed 21-July-2012].

[41] Ltd. Research in Motion. Blackberry academic
program.
http://us.blackberry.com/company/blackberry-

academic-program.html. [Online; accessed
1-August-2012].

[42] Krishnendu Roy. App inventor for android: report
from a summer camp. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,
SIGCSE ’12, pages 283–288, New York, NY, USA,
2012. ACM.

[43] Aaron Smith. Americans and their gadgets. Pew
Internet and American Life Project, October 2010.

[44] Telenav. Survey finds one-third of americans more
willing to give up sex than their mobile phones.
http://www.telenav.com/about/pr-summer-

travel/report-20110803.html, August 2011. [Online;
accessed 21-July-2012].

[45] DePaul University. GAM386: Game development for
mobile devices. http://www.cdm.depaul.edu/
academics/pages/courseinfo.aspx?crseid=008285.
[Online; accessed 1-August-2012].

[46] New York University. V22.0480: iphone programming.
http://www.cs.nyu.edu/courses/spring09/V22.

0480-004/. [Online; accessed 1-August-2012].

[47] Washington University. CSE574S: Advanced topics in
computer networking. http:
//www.cse.wustl.edu/~jain/cse574-06/j_1int.htm.
[Online; accessed 1-August-2012].

[48] Berkeley University of California. CS160: User
interface design.
http://bid.berkeley.edu/cs160-fall10/index.php.
[Online; accessed 1-August-2012].

[49] Berkeley University of California. CS294-7: Special
topics: Wireless communications and mobile
computing. http://bnrg.eecs.berkeley.edu/
~randy/Courses/CS294.S96/CS294-7.S96.html.
[Online; accessed 1-August-2012].

[50] U.S. Census Bureau. Statistical Abstract of the United
States, 2008. U.S. Census Bureau, Washington, DC,
127 edition, 2007.

[51] Jules White, Jeff Gray, and Adam Porter.
Smartphones in the curriculum workshop (smack
2011). In Proceedings of the 2011 24th IEEE-CS
Conference on Software Engineering Education and
Training, CSEET ’11, pages 520–522, Washington,
DC, USA, 2011. IEEE Computer Society.

[52] David Wolber. App inventor capabilities and
limitations. http:
//www.appinventor.org/capabilities-limitations.
[Online; accessed 9-October-2012].

61

APPENDIX

A. PLATFORMS

Platform Language requirements Software requirements Hardware requirements App distribution methods Development cost
Apple iOS Objective-C Required: Mac OS X with

XCode and the iOS SDK
(which comes with
iPhone/iPad simulators
for testing).

Required: Apple
Macintosh Computer.

Recommended: iPhone
device(s) and/or iPad
devices.

Distribution to a device is
through the App Store
(which requires approval
by Apple’s App Review
Process).

Free to develop on a
simulator. $99 annual fee
for an individual to
publish or send to any
device. Free iOS
Developer University
Program for educators to
push to devices.

Android Primarily based on Java.
C/C++ is possible for
native development.
Several scripting
languages through the
Scripting Layer for
Android.

Required: Android SDK
running on either
Windows, Mac, or Linux.

Recommended: Eclipse
plus Android
Development Tools
(ADT) plugin plus
emulators (Android
Virtual Devices) for
testing.

Required: Apple Mac, or
PC with Windows or
Linux.

Recommended:
Android-based mobile
device(s).

Google Play, Amazon
AppStore, third party
markets, and self-hosted
publication.

Free for development and
self-publication. One-time
$25 fee to publish on
Google Play store. $99
annual fee to publish on
Amazon AppStore
(currently being waived).

Windows
Phone and
Windows RT

Any .NET language for
Windows RT, HTML5
and JavaScript, C++.

Required: Either
Windows Phone SDK
(which comes with
Windows Phone Emulator
for testing), running on
Windows Vista or better
or Windows 8 SDK on
Windows 8 or better.

Recommended: Visual
Studio 2010 or 2012
Express or better.

Required: PC with
Windows Recommended:
Windows mobile
device(s).

Windows Phone
Marketplace and Windows
Store (which require
approval by Microsoft’s
app certification process).

Free for development on
emulator. $99 annual fee
for an individual to
publish or send to devices.
Free publishing for
students.

BlackBerry C/C++ (the native
platform), HTML5,
Adobe AIR ActionScript,
BlackBerry Java, or
Android.

Required: Development
software for either
C/C++, HTML5, Adobe
AIR, ActionScript, or
Java running on either
Windows, Mac, or Linux.

Recommended:
BlackBerry emulator.

Required: Apple Mac, or
PC with Windows or
Linux.

Recommended:
BlackBerry mobile
device(s).

BlackBerry App World,
third party markets, and
self-hosted publication.

Free.

62

Mobile Web HTML5, JavaScript, CSS. Required: Windows, Mac,
or Linux.

Recommended: An
HTML/JavaScript/CSS
editor, such as Eclipse
with JSDT, Visual Studio
2012, or Aptana Studio).

Required: Any device
running HTML5
compliant browsers such
as recent Chrome on
Android and Safari on
iOS.

Web apps may be
published immediately via
any website.

Free.

Apache
Cordova (also
known as
PhoneGap)

HTML5, JavaScript, CSS.

Note: Each Cordova app
is wrapped specifically for
Android, BlackBerry, iOS,
Windows Phone, or some
other environment.

Requirements are the
same as those of the
target environment (e.g.,
Android, iOS, Windows).

Requirements are the
same as those of the
target environment (e.g.,
Android, iOS, Windows).

Each app can be
distributed via regular
channels of the app’s
respective platform.

Same as target platform.

MIT App
Inventor

Visual (drag-and-drop)
development.

Web browser and Google
account.

Recommended:
Android-based mobile
device(s).

Google Play, third party
markets, and self-hosted
publication.

Free for development and
self-publication. One-time
$25 fee to publish on
Google Play store.

TouchDevelop TouchDevelop language. Required: TouchDevelop
app.

Windows Phone. TouchDevelop script
bazaar (free).

Optional: Windows Phone
Marketplace (which
requires approval by
Microsoft’s app
certification process).

Free for development on
an individual phone. $99
annual fee for an
individual to publish or
send to other devices.
Free publishing for
students.

63

