
98	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

SOFTWARE
TECHNOLOGY

Scaling Agile
Christof Ebert and Maria Paasivaara

AGILE PRACTICES HAVE evolved
steadily. During the early ’90s, Mi-
crosoft invented most of what was
later called agile.1 Driven by the
fast-growing complexity of their
Windows and Office product suites,
Microsoft early on advanced con-
cepts such as continuous build,
feature-driven teams, and the close
connection of business needs with
requirements and architecture flex-
ibility. A key milestone was Inter-
net Explorer, which Microsoft fully
redeveloped in the late ’90s to al-
low for flexible, scalable evolution.
These practices found their way to
the early agile frameworks. The ini-
tial Agile Manifesto, based on the
experiences of Microsoft, IBM, and
others, primarily collected principles
and practices. The label “agile” was
a wonderful marketing stimulus and
immediately triggered hype, specifi-
cally regarding small teams and low-
risk products.

Industry soon realized that criti-
cal systems need more than an agile
manifesto. Industry-scale software
development typically doesn’t fit
with the heavy constraints of early
agile practices, such as Extreme
Programming. Projects easily take
several years and span teams world-
wide. Global software engineering
demands that agile practices be scal-
able.2–4 Safety-critical systems need
thorough documentation, once ne-
glected by agile proponents.

In addition, business models
in software-driven systems have
evolved to flexible ecosystems. The
classic functional split demanded by
legacy-driven architectures has been
replaced by a more service-oriented
architecture and delivery model.
Recent technology trends, such
as three-tier cloud architectures,
adaptive component frameworks,
and connectivity for the Internet
of Things and Internet of Services,

facilitate new business models and
scalable reuse across companies and
industries.

Again, these industry develop-
ments require agile practices to be
scalable. However, scaling isn’t easy;
large projects often are globally dis-
tributed and have many teams that
need to collaborate and coordi-
nate. So far, proven models haven’t
been available. Empirical research is
missing on how to do a large-scale
agile transformation and what the
results should look like. Here, we
provide an overview of agile scaling
frameworks.

A Look at Some Frameworks
Agility in its early years was more
often a dogma than a coherent yet
flexible framework. At times, some
of the “gurus” preferred to fight
processes for the sake of revolu-
tion, rather than meeting industry
needs. Even today, developers and

From the Editor

Agile software development has become mainstream. Industry-scale agility for

distributed teams, large projects, or critical systems requires scaling agile prac-

tices, which agile scaling frameworks attempt to provide. Here, Maria Paasivaara

and I explore frameworks such as the Scaled Agile Framework (SAFe) and show

best practices from two industry case studies. I look forward to hearing from both

readers and prospective column authors about this column and the technologies

you want to know more about. —Christof Ebert

SOFTWARE TECHNOLOGY

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 99

managers are puzzled by traditional
agile themes such as “customer on
board” or “software before docu-
mentation.” Critical systems need
more meat in order to work flexibly
while considering product liability
and governance needs.

The classic V development model
is evolving to a W-shaped model of
incremental development and con-
tinuous delivery, thus incorporating
typical agile practices (see Figure 1).
The W model starts with agile plan-
ning, which involves such things as
the frequency of deliveries, incre-
ments, and the train of releases.
Then it proceeds to incremental de-
sign, verification, and integration.
Service-oriented architectures allow
adjusting to services and microser-
vices and evolving toward DevOps
practices, such as upgrade paradigms
during the operation of a system. A
typical example is the over-the-air
upgrades of modern automotive on-
board infrastructures.

Current approaches for scal-
ing agile blend agile and lean
practices to address real industry

needs. Organizations can use such
frameworks to help achieve these
transitions:

•	 Business model—from static
building and selling to dynamic
composing and continuous
delivery.

•	 Governance—from simple IT
systems and throwaway apps to
interwoven quality assurance
with auditable product liability,
functional safety, cybersecurity,
privacy, and availability.

•	 Process—from the V model with
heavy release cycles to scalable
agile processes.

•	 Competences—from silos of
functional know-how to IT as a
core competence of all engineers.

•	 Development—from compo-
nents and functions to services.

•	 Architecture—from localized fea-
tures to service-oriented patterns
with the convergence of embedded
electronics and open IT systems.

The experience reports on these
frameworks’ home pages present

fabulous success stories. However,
few independent empirical studies
exist on how the frameworks work
in practice, what circumstances
each framework suits best, and
what the challenges are and how to
overcome them.

Table 1 compares five agile frame-
works, which we selected on the ba-
sis of recent surveys and what we
see in industry usage. For example,
in a recent survey, almost 30 percent
of the respondents said they used
the Scaled Agile Framework (SAFe)
to provide scaled agility.5 Manag-
ers find it comfortable because it
has plenty of role definitions, which
hasn’t been explicit in the classic
agile toolkits used in the past two
decades. On the other hand, many
users perceive such a highly prescrip-
tive role-and-process scheme as over-
head and not any more agile.

Many practitioners consider SAFe
too heavy and complex.6 Like
CMMI in the past, it tries to in-
clude all best practices but doesn’t
provide guidance on how to scale
down. Some even say that SAFe adds

FIGURE 1. Agile scaling frameworks claim to provide a recipe for adopting agile at the enterprise scale. The classic V development

model is evolving to a W model of continuous delivery.

Delivery and

System
integration

integration

industrialization

Component

S
o
ftw

a
r
e

H
a
r
d
w

a
r
e

S
e
r
v
ic

e
s

Components
and services

Architecture
design

Requirements Delivery and

 System
integration

integration

engineering industrialization

Component

S
o
ftw

a
r
e

H
a
r
d
w

a
r
e

S
e
r
v
ic

e
s

Components
and services

Architecture
design

Requirements Delivery and

System
integration

integration

engineering industrialization

Component

S
o
ftw

a
r
e

H
a
r
d
w

a
r
e

S
e
r
v
ic

e
s

Components
and services

Architecture
design

Requirements Delivery and

System
integration

integration

engineering industrialization

Component

Softw
are

Hardw
are

Services

Components
and services

Architecture
design

Requirements Delivery and

System
integration

integration

engineering industrialization

Component

S
o
ftw

a
r
e

H
a
r
d
w

a
r
e

S
e
r
v
ic

e
s

Components
and services

Architecture
design

Requirements Delivery and

System
integration

integration

engineering industrialization

Component

S
o
ftw

a
r
e

H
a
r
d
w

a
r
e

S
e
r
v
ic

e
s

Components
and services

Architecture
design

Requirements
engineering

Classic V model for systems engineering:

• Goal: Collaborative development of safety-
critical functional components

• Organically grown synchronization points
between hardware, software, and emerging
services

• Governance-oriented heavy processes with
insufficient flexibility and agility

Agile scaling frameworks:

• Goal: Flexible collaboration across the lifecycle with adaptive
architectures and assured quality

• Full vertical abstraction layers with clear interfaces
and synchronization points

• Flexibility and agility while pertaining to quality demands

SOFTWARE TECHNOLOGY

100	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

to bureaucracy, evolving to “the new
waterfall.”

Other agile frameworks, such
as Large-Scale Scrum (LeSS) and
Lean Scalable Agility for Engineer-
ing (LeanSAFE), have addressed this
high complexity. They define much
less and give more freedom to tailor-
ing. So, companies must incremen-
tally compose their own framework
and empirically measure which prac-
tices have the best fit and value.

Using an Agile Framework
The deployment of SAFe at two glob-
ally distributed companies illustrates
the use of scalable agile technolo-
gies. Comptel, a telecommunications
company that was recently acquired
by Nokia, processes mobile-device
usage data. It serves more than 300

customers, mostly communications
service providers, worldwide. NAPA
provides software for designing and
operating ships.

SAFe is complex and provides a
huge set of templates and process
elements.6 It includes the team,
program, and portfolio levels as
well as the optional value stream
level. At the team level, it adopts
Scrum practices, but using Kanban
is also possible. At the program
level, it embarks on incremental de-
liveries with different scales, such
as the concept of an agile release
train. This corresponds to sprints
at the team level, but with a lon-
ger time frame. As a process frame-
work, SAFe also determines specific
roles—for example, system team,
product manager, system architect,

release management team, or de-
ployment team. At the portfolio
level, planning is often based on
epics that define large development
initiatives. The value stream level
supports the development of large,
complex solutions, which require
multiple, synchronized releases.

Before the SAFe adoption, both
Comptel and NAPA had been using
agile development at the team level
for years. However, they both lacked
agility in other parts of the organi-
zation, and they especially lacked
support structure in the organiza-
tional layers above the team level.
In addition, both companies hoped
to improve their capability to deliver
more frequent releases, add port-
folio level prioritization, manage
work from ideas to implementation,

Table 1. A comparison of five agile frameworks.

Framework

Criteria
Scrum of Scrums
(SoS)

Scaled Agile
Framework (SAFe)

Large-Scale Scrum
(LeSS)

Disciplined Agile
Delivery (DAD)

Lean Scalable Agility
for Engineering
(LeanSAFE)

Scope Software, hardware,
and systems; flexible

Software Software Software Software, hardware,
and systems

Differentiator Enables scrum for all
situations and scales

Is complex, with
many artifacts, roles,
and guidelines

Provides flexibility
by offering only
suggestions

Is complex, with
coverage of many
models

Works with critical
systems

Underlying technology Scrum Scrum and other agile
principles, lean

Scrum Scrum, lean Scrum, lean

Adoption Usage in many
companies

Usage in several
companies

Usage in several
companies

Usage has started Usage has started

Scaling Is flexible and good
to adapt in different
settings

Targets large
companies but is
perceived as heavy

Can be adapted to
different settings

Can be adapted to
different settings

Can be adapted to
different settings

Complexity Low High Medium Medium Medium

Cost Low High Medium Medium Low

Globally distributed
teams

Feasible Feasible Feasible Difficult Feasible

SOFTWARE TECHNOLOGY

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 101

and systematically manage depen-
dencies. Although agile develop-
ment worked relatively well at the
team level, the team members had
difficulty seeing how their daily
work linked to and affected other
parts of the globally distributed
organization.

At Napa the adoption was slow
and gradual, whereas at Comptel
both business lines planned and
transformed the organization in a
couple of months. Both companies
customized the framework to suit
their organization and found that to

be one of the success factors. Other
success factors were

•	 investing in the first program in-
crement planning event to make
it a success,

•	 employing external consultants
to train and coach,

•	 having active internal change
agents,

•	 having strong leadership sup-
port, and

•	 quickly reacting to feedback to
continuously improve and re-
move the adoption’s pain points.

The most serious challenges included
change resistance, lack of commu-
nication of the adoption, lack of
continuous improvement, and lack
of training and support during the
adoption.

Both organizations considered
their transformations successful.
They reached their goals:

•	 more frequent and more predict-
able releases with better quality,

•	 improved visibility and com-
munication across the globally
distributed organization,

ADOPTING SAFE AT COMPTEL

We compared the adoption of the Scaled Agile Framework
(SAFe) in two business lines of Comptel, a globally dis-
tributed organization that was recently acquired by Nokia.
The business lines started their adoption at different times,
within six months. On the basis of our interviews, we deter-
mined that the business line that started later had a more
successful transformation, especially because that business
line learned from the other business line’s experience.

We identified seven success factors, which we briefly
elaborate here.

First, train personnel well in advance. Comptel learned
that training both the managers and team members on the
framework and its adaptation is essential. The earlier
adoption didn’t properly perform this training, which led
to challenges.

Second, inform and engage people. Ensure from the
start that everybody understands the reasons for the
change and why it’s important. In the first adoption, the
lack of knowledge and communication about the change
increased the resistance to change, whereas in the second
adoption, the transfer of information was a success factor.

Third, involve change agents. At Comptel, the change
agents were people who visibly pushed the change for-
ward, gave training, and contributed to the customization
and continuous improvement. These persons included
managers, external coaches, and a full-time release train
engineer (RTE).

Fourth, hire an experienced external consultant to
support tailoring agile scaling and putting it into practice.
Comptel hired external consultants both at the beginning to
give training and during the transformation to coach the key
personnel and to help with the first program increment (PI)
planning event. The company saw this external support as a
main success factor.

Fifth, prepare well for the first PI planning event. In the
second adoption, the RTE prepared extremely well, with an
external coach’s help, by creating agendas and instructions
for the participants. The whole organization participated in
the event, which positively affected the participants’ atti-
tude toward the change.

Sixth, have a full-time RTE. The second adoption
employed a full-time RTE, which was considered a suc-
cess factor. Besides preparing and leading the PI planning
events, the RTE managed the coordination by arranging and
leading, for example, the Scrum-of-Scrums (SoS) meetings
and taking care of the continuous-improvement items. (For
more on SoS, see Table 1 in the main article.)

Finally, take recognized improvement items seri-
ously by assigning responsibilities and monitoring their
implementation. In the second adoption, as soon as im-
provement items were raised, the RTE concentrated on
improving the ways of working by creating action plans,
assigning responsible persons, and following the imple-
mentation. Our interviewees were happy because even
though the organization faced problems, they knew that
improvements were ongoing.

SOFTWARE TECHNOLOGY

102	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

•	 better synchronization and col-
laboration across the teams,

•	 improved dependency discovery
and management, and

•	 better alignment across the
organization.

However, the work isn’t over; both or-
ganizations find it extremely important
to continuously improve their prac-
tices after the adoption. The sidebar
“Adopting SAFe at Comptel” shows
some observations from practical use.

Lessons Learned from Using
Agile Frameworks
Here are seven practical recommen-
dations for developers.

•	 Move from classic functional
responsibilities to small, cross-
functional teams. Grow meth-
odologies and the underlying
technologies to agile engineering.

•	 Enhance the lifecycle for con-
tinuous development. Using
frequent synchronization points,
change the V model to the W
model. Focus on integrity by

establishing flexible synchroni-
zation points between hardware,
software, and service develop-
ment along the lifecycle.

•	 Empower distributed teams,
both internal as well as suppliers
and ecosystem partners, to drive
design decisions at their respec-
tive level. Ensure consistent
documentation with collabora-
tive workflow tools.

•	 Grow continuous integration
of systems and services. Intro-
duce integrated processes and a
systematic methodology based
on an application lifecycle man-
agement and product lifecycle
management (ALM/PLM) tool
chain.

•	 Ensure robust system-level
design. Approach novel tech-
nologies at the system level:
system-on-chip, microservices,
and cloud solutions for innova-
tive products and services.

•	 Master relevant quality re-
quirements for critical systems.
Cybersecurity, functional safety,
service orientation, and usability

must be designed and achieved
on the systems-engineering level.

•	 Enhance reuse across platforms,
products, and markets. Evolve
to self-x-type architectures and
technologies such as self-aware
adaptive systems to cope with
fast-changing components and
environments.

In the companies in which we im-
plemented agile scaling frameworks,
we found two main transformational
patterns. First, it takes effort to tai-
lor the frameworks to concrete en-
vironments, organizations, cultures,
and so on. There is no “out of the
box,” and you shouldn’t assume that
using only some parts will provide
early payback. This transformation
must start in peoples’ minds so that
it reaches the organizational culture.

Second, agile frameworks enforce
a more comprehensive view of the
transformation. Rather than simply
focusing on a process or workflow, as
in the early agile methods, the frame-
works require organizations to adapt
processes, roles, and tools in paral-
lel. In addition, it’s not only the team
level that needs to transform but also
the whole organization. Figure 2
shows this evolution, together with
the more obvious benefits.

T he rising demands for high
quality, quick delivery, re-
duced costs, and flexibility

have pushed agility to practically
all industries. Users expect the same
adaptive behaviors and continuous-
delivery models they’re used to with
their mobile devices.

Agility has arrived in real-world
development, beyond mere software
applications. Development of even
critical systems will evolve to a con-
tinuous process that fully decouples

•
•
•

•
•
•

Agile

ProcessesFragmented tasks

Organically grown tools

Inefficiency Efficiency

Project management

Setup, RE SD DD Impl UT Int

Configurations

Isolated unconnected processes

Inconsistent handling

Overheads and rework

Flexible yet consistent results

Improved quality and cycle time

Higher motivation

Collaboration

Design

ALM/PLM, code,
modeling

ERP, wikis,
file systems

CM, defects,
documents, and so on

Project management
requirements

People

Tools

Traditional

Testing team

SW team 1 SW team 2 HW team Mechanical team

Scrum of
scrums

FIGURE 2. Agile frameworks enhance efficiency by integrating different perspectives

of processes, roles, and tools. RE = requirements engineering, SD = system design,

DD = detailed design, Impl = implementation, UT = unit testing, Int = integration,

CM = configuration management, ALM/PLM = application lifecycle management/

product lifecycle management, and ERP = enterprise resource planning.

SOFTWARE TECHNOLOGY

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 103

the rather stable hardware from de-
livered services driven by continu-
ous software upgrades. Agile service
delivery models combining DevOps,
microservices, and cloud solutions
will allow functional changes far
beyond the traditional V model.
Hierarchic modeling of business
processes, functionality, and archi-
tecture from a systems perspective
will allow early simulation while
ensuring robustness and security.
Development processes across the
lifecycle from vision to concept to
operations and service will follow
this trend to fluid delivery models.

Because constraints vary across
application domains, such as liability
and governance, agile practices must
be tailored to needs and risks. To ad-
dress such tailoring, companies can
use agile scaling frameworks, which
can be applied across the organiza-
tion. From working with many com-
panies worldwide on implementing
these frameworks, we’ve found that
introducing agile development means
changing the culture and mind-set. It
requires long-term commitment, big
investments, and customization to a
company’s specific situation.

Barriers to using agile technolo-
gies no longer exist. Developments
in globally distributed teams, large
projects, safety-critical systems, and
hardware and systems engineering
have showed that agile technologies
are adoptable and adaptable. Scaled
agile isn’t about tailoring a model;
it’s about ensuring that the agile cul-
ture reaches the engineers and their
management. The biggest, most dif-
ficult change is that of the mind-set.
Changing the practices won’t make a
company agile if the underlying cul-
ture and thinking don’t change.

We look forward to seeing other
studies on the use of agile scaling
frameworks. We’re interested in not

only success stories but also reports
on customizations, challenges, and
the solutions to those challenges.

References
1.	M.A. Cusumano and R.W. Selby,

Microsoft Secrets, Free Press, 1998.

2.	C. Ebert, Global Software and IT: A

Guide to Distributed Development,

Projects, and Outsourcing, John

Wiley & Sons, 2012.

3.	M. Paasivaara et al., “Integrating

Global Sites into the Agile and Lean

Transformation at Ericsson,” Proc.

IEEE 8th Int’l Conf. Global Software

Eng. (ICGSE 13), 2013, pp. 134–143.

4.	M. Paasivaara, “Adopting SAFe to

Scale Agile in a Globally Distributed

Organization,” Proc. IEEE 12th Int’l

Conf. Global Software Eng. (ICGSE

17), 2017, pp. 36–40.

5.	11th Annual State of Agile Survey,

VersionOne, Apr. 2017; explore

.versionone.com/state-of-agile

/versionone-11th-annual-state-of

-agile-report-2.

6.	M. Kalenda, “Scaling Agile Software

Development in Large Organiza-

tions,” master’s thesis, Faculty of

Informatics, Masaryk Univ., 2017;

is.muni.cz/th/410499/fi_m/masters

_thesis.pdf.

ICGSE

The annual IEEE International Conference on Global Software Engineering
(ICGSE) brings together worldwide industry and research leaders in distributed
software development. ICGSE 2017 had participants from over 20 countries,
with one-third of the papers from industry. ICGSE 2018 will be in Gothenburg,
Sweden, colocated with the International Conference on Software Engineering
(ICSE), from 27 to 29 May. Join the conference and learn how to succeed with
distributed software projects. For more information, visit www.icgse.org.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CHRISTOF EBERT is the managing director of Vector Consulting

Services. He is on the IEEE Software editorial board and teaches

at the Universities of Stuttgart and Paris. Contact him at

christof.ebert@vector.com.

MARIA PAASIVAARA is an associate professor of computer

science at the IT University of Copenhagen. She’s the general chair

of the 2018 International Conference on Global Software Engineer-

ing (ICGSE). (For more on this conference, see the related sidebar.)

Contact her at maria.paasivaara@gmail.com.

