
0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E JULY/AUGUST 2021 | IEEE SOFTWARE 7

THERE IS NO software without sys-
tems engineering. Software is always
part of a bigger system. Even a sim-
ple application interacting with a hu-
man user consists of software building
blocks, a service delivery, various hard-
ware systems, user experience, energy
management, connectivity and many
more. Systems engineering or “systems
thinking,” as it is often called, ensures
that products deliver more value than
the capabilities of their individual
parts. Such value beyond the individual
components is what we call a system,
or even a system of systems. A system

is a set of interacting elements that to-
gether achieve a purpose.

Often, we face numerous software
engineers working on their respective
deliverables yet failing to achieve a com-
prehensive vison and understanding the
entire system with its dependencies. Test
and integration will first show the defi-
ciencies, and later enhancements typi-
cally demand a huge extra effort, often
called “technical debt” or “insufficient
maintainability.” A recent interaction
with a software team lead underlines
this challenge. She was asking for more
people due to otherwise not being able
to deliver the product in time. Being
asked about an architecture analysis
and potential refactoring she strongly

insisted that there is “no time for high-
level analysis” when deadlines are criti-
cal and software must be delivered.
Along this misunderstood agile think-
ing, they did not only neglect trace-
ability and testability, but even did not
maintain their own modeling, which
they initially saw as so important. With
her overly ambitious agile delivery fo-
cus, she was unaware that straw fires
might look nice in her weekly burn-
down charts but not really mean sus-
tainable progress.

The Magic Triangle of Cost,
Quality, and Innovation
Participants in our annual surveys in
this column observe three significant

Digital Object Identifier 10.1109/MS.2021.3071806
Date of current version: 18 June 2021

Agile Systems
Engineering
Christof Ebert, Vector Consulting Services

Frank Kirschke-Biller, Volkswagen

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

SOFTWARE
TECHNOLOGY

From the Editor

Systems thinking facilitates mastering the growing complexity of products and uncer-

tainties in volatile business climates. Dependencies must be evaluated, architectures

modeled and conveyed, interfaces agreed, and services specified—across a variety

of interacting components. From IT with its distributed services to Internet of Things,

medical, and mobility systems, there is no software without systems engineering. This

article provides a hands-on overview on agile systems engineering from a technology

perspective. Stay tuned and let me know your feedback.—Christof Ebert

SOFTWARE TECHNOLOGY

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

challenges.1 Innovation, cost, and qual-
ity have emerged as the single most
relevant short-term challenges across
industry domains, indicating the need
to succeed in a fast-changing world
with unclear business drivers. Obvi-
ously, the threats of product liability
and global visibility of insufficient qual-
ity have reached technology companies.
The time is gone when software could
mature with the early adopters at a
bleeding edge. What is delivered must

be mature and compliant. Mastering
this magic triangle top-down demands
an agile system engineering approach,
that is, “time boxing” and “expense
boxing” with a restrictive portfolio man-
agement to avoid that scarce resources
being wasted in firefighting.2,3

With the (post)pandemic new nor-
mal many companies have reached
a turning point—across industries.
Global growth has slowed down, but
at the same time successful compa-
nies are growing with a shift toward
 autonomy, convergence, ecology, and
services. These four key drivers rep-
resent a huge transformation, along
the entire supply chain. This does
not only affect product IT, that is,
what used to be called “embedded

software,” but also remote function-
ality such as services within enter-
prise IT, and thus demands a holistic
approach. Software matters both as
a key value driver and as the glue to
dynamically deliver services for pre-
viously not specified needs.3

Yet complexity is growing due
to this fast spread of large software-
driven systems of systems.4 Unmas-
tered dependencies, lack of portability,
and the huge lifecycle cost of such a
bottom-up software perspective is
driving the current emergence of sys-
tems engineering as a mandatory ac-
tivity for all software projects. Figure 1
exhibits the fast-growing complexity
and its challenges. The horizontal axis
shows the evolution from traditional
software teams to global ecosystems.
The vertical axis shows the move
from software products toward multi-
discipline systems of systems.

 One obvious answer to master
software growth and the uncertain-
ties in innovative business is agile de-
velopment. Yet it often reaches limits
when products get more complex,
and dependencies increase.1,2,5 Glob-
ally distributed teams, large projects,
continuous updating “over the air,”
safety-critical systems as well as com-
plex hardware require a targeted ad-
aptation of agile methods utilizing
systems engineering practices.

Often, we face projects that fail
on essentials such as requirements
engineering or insufficient trace-
ability of design decisions to vari-
ous components. When asked about
the reasons, we hear that it is agile,
meaning that deliveries matter more
than process. Many software prod-
ucts and companies suffer from this
misinterpretation of agile develop-
ment and not seeing the forest for
the trees. The implementation of
challenging functions to be deliv-
ered with periodic builds occupies
all energy, leading to a lack of con-
sideration (or understanding) of the
system in its entirety. Agile software
teams are so focused in finishing
their continuous deliveries that they
do not realize that the system will
become increasingly complex.

One Location
Few Teams
One Supplier

Several Locations
Multiteam
Ecosystems

Software Only
Few Components

One Engineering Discipline

System of Systems
High Complexity

Critical Dependencies
Several Engineering Disciplines

Agile
Systems

Engineering

FIGURE 1. The need for agile systems engineering.

Systems engineering or “systems
thinking,” as it is often called, ensures
that products deliver more value than
the capabilities of their individual parts.

SOFTWARE TECHNOLOGY

JULY/AUGUST 2021 | IEEE SOFTWARE 9

Obviously, it needs more than just
scaling agile to large software prod-
ucts. It also needs a method to mas-
ter systems-driven complexity. The
power of a systems engineering meth-
odology focusing on architecture and
developing a model that comprehends
all of the dimensions, behaviors, and
components of a system is increas-
ingly understood. It is interesting
to note that it is the more seasoned
practitioners and experienced senior
managers that demand systems en-
gineering, rather than young profes-
sionals who had been educated with
agile methods and software model-
ing but never really learned about
the major failure points in any proj-
ect, namely requirements, dependen-
cies, and quality requirements such as
compliance, robustness, cybersecurity,
and performance.3

Agile Systems Engineering
IT and cyberphysical systems are under
enormous market pressure. While they
must be uncompromisingly innovative
in terms of technology and customer
function, the markets demand ever
shorter cycle times and continuous ef-
ficiency increases while maintaining
high safety standards. Flexibility and
costs must be constantly improved in
global competition.

Traditional development processes
that achieve innovation and quality
through a complex development and
validation process are only partially ef-
fective for highly innovative products.
Our customer projects and studies show
that rework costs can be reduced by
20–50% over the entire product life-
cycle by improving requirements and
systems engineering.1–3,5

Agile techniques are the essential
lever for flexibility and efficiency. But
how can agility be mapped to systems
engineering? Textbook methods do not
fit to industrial practice. Performance,

functional safety, cybersecurity, and a
growing global variety of variants re-
quire specifically adapted development
processes—starting with systems en-
gineering. Governance and traceabil-
ity must be balanced in the specific

context with lean procedures. Heavy
frameworks such as software platform
embedded systems (SPES) and scaled
agile framework (SAFe) are suitable
for large projects but at the same time
are complex and associated with high
implementation risks. They limit agil-
ity with their built-in overheads due
to heavyweight processes.5 In addi-
tion, they do not address the specific
challenges of critical systems such as
functional safety and the agile collabo-
ration of several development partners.

Agile systems engineering must
consider four dimensions along the
entire lifecycle (Figure 2), as described
in the following paragraphs:6–9

• Business: Clear visibility of the
business value of requirements;
quality-first focus to avoid
expensive and time-consuming
rework; product catalogues with
feature implementation plan for
consistent development road-
maps and accelerated design
decisions; technical debt, and its
impact on efficiency and future
cost; systematic regression tech-
niques for the agile partial deliv-
eries; planned black-box reuse of
hardware and software elements,

with traceability for end-to-end
change management; key perfor-
mance indicators in the devel-
opment process, for example,
function points, benchmarks, and
trend-opportunity indicators.

• People: Collaboration models
and agile cooperation of teams,
which are distributed worldwide;
governance of ecosystems and
supply chains based on contrac-
table system-level requirements,
design, development, validation,
and integration; efficient and
tool-based distributed knowledge
management; mapping of central
roles such as an embedded safety
officer in all Scrum teams.

• Process: Adapted agile methodol-
ogy with hierarchical scrum for
system engineering and orches-
tration of cross design teams;
test-driven requirements engi-
neering for consistency between
development and validation
activities; test-driven develop-
ment with continuous build
pipeline; flexible synchronization
of early software and hardware
deliveries; separation of concerns
and introduction of frequent
synchronization points to allow
for continuous integration and
deliveries.

• Technology: Modeling and simu-
lation as well as model-based
system technology and hardware
simulation; architectural analysis;

There is no software without systems
engineering. Software is always part
of a bigger system.

SOFTWARE TECHNOLOGY

10 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

early experience of functions and
thus early verification and valida-
tion on basis of models; archi-
tecture and interface simulation;
performance modeling and for
bigger systems a digital twin to
simulate changes before deploy-
ing to the real system. Powerful
toolchains offering comprehensive

views on different system aspects
and a seamless interface to soft-
ware development tools play a
major role, too.

Agile systems engineering is pre-
serving these dimensions top-down

to achieve consistency and coherence
across work products, while facilitat-
ing agile engineering deliveries

• ensure business attitude in
connecting business needs and
market value with engineering
management and day-to-day op-
erational decision making

• facilitate an efficient process with
systematic and repeatable results

• enhance teamwork with col-
laboration and synchronization
of activities and deliverables
across organizations, locations,
disciplines, and lifecycle stages

• enforce a rigid quality-first focus
with testability and consistency
across quality requirements

• manage complexity and project
risk starting with requirements
engineering and connecting to
project management, configura-
tion management, supplier moni-
toring, and related activities.

Agile systems engineering needs care-
ful balancing of different constraints
to achieve a useful method across
projects and engineering teams. As a
case in point, look at the four small
screenshots embedded in Figure 2.
The lower right picture, for in-
stance, shows what we call the sat-
ellite model of systems engineering.
Understanding that competent re-
sources are scarce, we have derived
knowledge management models that
combine push and pull to inform in a
top-down manner about governance
schemes, while at the same time cap-
turing bottom-up any open question
to ensure coherent and systematic

People
Delivery-Oriented
Empowered Teams
Global Collaboration
Value-Minded Culture

Process
Efficient and
Effective
Risk Mitigation
Governance

Business
Value Focus
Flexible Fast Delivery
Fluid Ecosystems
and Supply Chains

Technology
•

•

•

•

•
•

•

Safety, Cybersecurity
• Adaptive Service-

Oriented Architectures
• Legacy Evolution

•
•
•

Empower
and Deliver

Focus
on Value

Reduce
Waste

Continuously
Improve

Optimize
Value

Streams

FIGURE 2. The four perspectives of agile systems engineering.

One obvious answer to master
software growth and the uncertainties
in innovative business is agile
development.

SOFTWARE TECHNOLOGY

JULY/AUGUST 2021 | IEEE SOFTWARE 11

handling. Coaching has become the
key enabler of systems engineering,
and we typically install such coach-
ing satellites along all three dimen-
sions of an agile matrix organization
in functions, locations, and projects.

Systems engineering demands suit-
able models and pictures to abstract and
communicate across heterogeneous user
communities. Systems Modeling Lan-
guage (SysML) which is a UML profile
extension, has evolved as graphical no-
tation. Unfortunately, there is no single
standard, but many variants which lead
to a restricted interoperability of SysML
models among different companies
and modeling tools. Like UML, SysML
models lack precise unambiguous se-
mantics and thus prohibit methods of
formal verification and model checking.
For instance, traceability models and
data consistency checking for model
equivalence is hardly possible. Twenty-
five years ago, David Parnas coined
some simple yet effective guidance for
creating software jewels that apply to
systems engineering, at least as much as
they do to software engineering:6

• Design before implementing
• Document your design.
• Review and analyze the docu-

mented design.
• Review implementation for con-

sistency with the design.

Although systems engineering de-
mands model exchange and visual
information sharing across team and
even company boundaries, collabora-
tion with different modeling tools still
is extremely cumbersome. Even the
Object Management Group’s (OMG)
XML Metadata Interchange (XMI)
which is the standard format for stor-
ing SysML metadata information is
highly tool and vendor specific. So, we
still face many companies using sim-
ple drawing tools such as MagicDraw

and Visio with SysML plug-ins. Given
the complexity of system models and
the need to sharing, analyzing, and
maintaining these models, we recom-
mend professional tools, such as Ca-
pella, Enterprise Architect, Papyrus,
PREEvision and Rational Rhapsody.
Papyrus and Visual Paradigm are
available as free editions and thus al-
low a simplified start with a profes-
sional tool. Note that with all these

tools, exchange of graphical informa-
tion across tools is close to impossible.
This means a lock-in with any of your
modeling tool, and thus careful evalu-
ation up front according to your spe-
cific needs.

One observation after almost two
decades of agile transformation proj-
ects is that each organization needs
its own adapted process model that
fits its boundary conditions of mar-
ket, technology, and culture—and is
systematically followed.5,7 Although
often promised as a silver bullet, a
standard for everyone does not fit.
We have seen that with the Capa-
bility Maturity Model Integration
(CMMI), which initially was an ex-
cellent model to grow process ma-
turity and later became extremely
complex when it tried to cover every
potential application domain from
development to supply chain, from
safety to cybersecurity, and so on.
The same happened to agile meth-
ods like Scrum and Kanban, which
are highly beneficial in practically all

industry projects. Yet, more recent ef-
forts to introduce agile governance
frameworks have often been fruitless
due to mere overkill.5 The same evo-
lution track is visible in systems en-
gineering standards and frameworks
that, in their ambition to become a
jack of all trades, are currently be-
coming increasingly complex, often
sacrificing usefulness and usability
for complexity and overheads.7–10

Experiences With Agile
Systems Engineering
Let us look to a transformation proj-
ect where we introduced agile systems
engineering in a large multinational
organization. Figure 3 shows the out-
line with business needs on the left
side, specific changes, both agile and
system engineering in the middle, and
results on the right side. The biggest
challenge in most volatile, uncertain,
complex, and ambiguous projects is
the continuous evolution of business
goals and their stead flux into almost
ad hoc design decisions. Development
is therefore not primarily driven by a
rigid process but rather by an evolv-
ing product.

A cornerstone in agile systems en-
gineering is a feature-based process
that is based on solid requirements
engineering and feature dictionary
with subordinate logical functions
and software components deployed to
variable physical components. Such
company-wide information model
forms the basis for global cooperation

Flexibility and costs must be
constantly improved in global
competition.

SOFTWARE TECHNOLOGY

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

and black-box reusability. Project-spe-
cific feature implementation planning
serves as backlog input for system de-
velopment in an orchestrated approach
and enables agile and coordinated
functional growth. The prioritization

of functions and definition of a mini-
mally viable product as well as peri-
odic integration phases for the solution
are essential elements of the planning.

Systems engineering must model
and assess critical dependencies top-
down. We typically distinguish the
perspectives listed in Table 1. While

these perspectives heavily interact, they
still must be orchestrated.

Systems engineering by its nature is
not only software and code but cov-
ers all disciplines. For instance, sup-
ply chains with complex technologies

require full transparency across com-
ponents. Often engineering teams
insist that test is only possible with
software allocated to hardware enti-
ties. Wrong. This would only delay
test and decrease portability and flex-
ibility considerations. To allow flexi-
ble systems that are maintainable and

thus viable for future extensions, we
need separate layers with a service
perspective. Vertical integration is a
clear no-go—yet hard to learn, as we
see day by day.

Another example is the interde-
pendency of functions that are de-
ployed on different cores of the CPU.
Designers must ensure the functions
that are similar or communicate a lot
with each other should be placed on
the same core to reduce communica-
tion costs and delays. Cybersecurity,
for instance, can waste some +30%
throughput performance due to se-
cured communication beyond chip
boundaries. Also, real-time schedul-
ing matters. Often, we face engineer-
ing teams who when asked how they
derive their respective real-time re-
quirements would answer something
like, “It is 200 ms because we always
use 200 ms.” Consider timing re-
quirements such as a reliable multi-
core scheduling algorithm to make
sure there is no latency incurred.

FIGURE 3. Industry case study with agile setup and lean MBSE.

Agile Teams

S
ys

te
m

s
A

gi
le

Reduced Engineering
Cost With Short Time
to Market

Risk Reduction Prior to
Market Introduction

Global Engineering
Teams Close to Local
Markets

Quality Focus:
Cybersecurity,
Performance, Safety

Agile Setup

Time-Boxed

DevOps

Global Setup

Model-Based
Simulations

Reuse/PLE

Architecture
and Integration

Reduce Waste

Model-Based
Systems Engineering (MBSE)

Architectural Level
Orchestration of
Feature Teams

Incremental,
Distributed
Evolution of
Architecture in
Scrum Teams

Fast Feedback
Cycles With Less
Rework

Agile Feature
Teams

Continuous
Integration

Internal DevOps

Modeling
Platform and Reuse
Requirements Centered
Viewpoints

System
Architecture

AchievementsMarket Demands

•

Component-Level
Requirements for

Integration
Test
Reuse

•
•
••

•

Agile systems engineering needs careful
balancing of different constraints to
achieve a useful method across projects
and engineering teams.

SOFTWARE TECHNOLOGY

 JULY/AUGUST 2021 | IEEE SOFTWARE 13

Agile systems engineering encom-
passes the entire product lifecycle and
organization, not just the development
activities. This includes periodic soft-
ware maturity reports with a focus on
delivery dates, feature-based imple-
mentation, and test status reports,
which include earned value manage-
ment, full transparency in open ques-
tions, tool integration with defined
interfaces, and the coordination and
traceability of distributed features to
close the circuit. Therefore, systems
engineering needs comprehensive life-
cycle management method and tool

support for requirements, modeling,
traceability, verification, and con-
tinuous build and deployment.4 The
underlying information model must
therefore take different perspectives
and layers of abstraction to move
from product features and system
specifications to component require-
ments and software specifications.

Artificial intelligence (AI) and ma-
chine learning (ML) are increasingly
deployed for mastering the develop-
ment process and artifacts.1 Whether
it be debugging, error flagging, or test-
ing, AI is helping teams in speeding

up their checks and processes. One
way that ML helps is with coding-
based assistants, which helps to iden-
tify critical patterns inside data sets.
Delivering critical insights to drive
new feature development in coming
iterations. Giving developers access to
a broader range of insights, which can
be tested across multiple teams around
the world. ML also enhances agile
practices through automatic identifi-
cation of minimum viable regression
test suites and updating traceability
in test-driven requirements engineer-
ing. AI and ML in systems engineering

Table 1. Systems engineering perspectives, typical traps, and mitigation guidance.

SE perspective Relevance Traps and risks Mitigation guidance

Value The perceived value which translates
the product to a viable business
model

Endless feature lists, without traceability
to business value

Ensure a traceability of requirements to a
business value, an owner, and preferably a
client. Use prioritization

Behavior Primary functions and their results,
such as algorithms and their results,
end-to-end

Functions are specified with only sunny-
day scenarios

Capture real worst-case feature correlations.
Use negative requirements, such as misuse
and abuse cases

Structure Logic building blocks and their
interfaces

Systems organically grow by adding
content here and there

Apply periodic refactoring and architecture
analysis. Use measurements such as
coupling, overriding, and so on

Information System information entities and
their relationship, validity, and data
protection

Inconsistent data and unclear validity of
information

Check data entities at runtime with
plausibility checks

Services Access points to trigger behaviors
at runtime including their definition,
discovery, and orchestration

Software functions are labeled a service
without the necessary orchestration

Build a service-oriented architecture with
orchestration, registry and flexible usage

Performance Runtime interaction, including the
management to ensure robustness
and availability

Runtime behavior is not considered thus
slowing down entire systems

Analyze scheduleability, real-time reaction,
and timing constraints based on actual
requirements

Reusability Defined variation points in the
system structure

Unmaintainable stand-alone variants Define variation points for black-box reuse to
deploy systems in specific market deliveries.
Maintain a master product catalogue and
roadmap

Portability Usage of a system or product in
different context

Product components are connected to
each other or to a specific hardware

Maintain components and products that can
be dynamically allocated

Deployment Mapping of services to software and
software to hardware building blocks

Overly specific constraints—or not
considering hardware requirements at all

Specify the underlying HW constraints and
possible deployment scenarios already
during requirements analysis

SOFTWARE TECHNOLOGY

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

need methodologies for multiparadigm
modeling rather than classic UML/
SysML perspectives and for mastering
AI-based model evolution.

In deploying agile systems engineer-
ing we achieved the following results:

• Reliability: Self-organization
considerably reduces the amount
of cooperation in comparison to
the classic project management
approach.

• Transparency: The transparency
of the project status and thus the
project management is signifi-
cantly improved.

• Efficiency: Speed and quality
are improved. Management and

teams recognize and appreciate
improvements and agile team
spirit. In particular, the early
definition of requirements and the
acceptance of changes during de-
velopment as part of an agile pro-
cess are essential for efficiency.

• Lifecycle management: Product
complexity is better managed
and controlled.

• Quality: Reuse and embedded
quality responsibility create bet-
ter quality.

The transformation to agile sys-
tems engineering requires professional
change management. We recommend an
agile transformation with evolutionary

deployment, power users for coach-
ing, meaningful piloting, continuous
training, and suitable tool support.
Such change is not for free, and we
strongly suggest integrating related
cost, both people and change, directly
into the annual budgets, together with
performance indicators to track prog-
ress and benefits.

Making Agile Systems
Engineering Happen
Agile systems engineering supports the
continuous and incremental develop-
ment of requirements and the valida-
tion up to the launch and, above all,
the ongoing development in the lifecy-
cle accordingly. Due to the increased
degree of abstraction with a focus on
the customer function at the begin-
ning of the requirements development
and analysis, problem descriptions
are much clearer, easier, and less re-
dundant. This not only increases the
development speed but also ensures
clearly understandable domain con-
cepts within the project. Models
help with the consistency of system
requirements with software require-
ments and further on to design and
validation. They facilitate consistency,
transparency, and traceability when
changes are implemented at a later
lifecycle stage.

Agile systems engineering should
not dogmatically use a complex pro-
cess model but, rather, chose selected
individual agile methods as suitably
as possible and then continuously
optimizing them based on practical
experience. This is the only way that
the agile culture is perceived as use-
ful and actively used by engineers and
their management. The most dif-
ficult challenge is connecting short-
term software deliveries with strategic
systems evolution. It is not either bot-
tom-up agile software deliveries or
top-down comprehensive systems

ABOUT THE AUTHORS

CHRISTOF EBERT is the managing director of Vector Consulting

 Services, Stuttgart, 70499, Germany. He serves on the editorial board of

IEEE Software and is a Senior Member of IEEE. Further information about

him can be found at https://twitter.com/christofebert. Contact him at

christof.ebert@vector.com.

FRANK KIRSCHKE-BILLER is a senior manager at Volkswagen in

Wolfsburg, 38436, Germany, where he is leading systems engineering

topics. Previously, he was with Ford in global management positions.

Contact him at frank.kirschke-biller@volkswagen.de.

Yet, more recent efforts to introduce
agile governance frameworks have
often been fruitless due to mere
overkill.

SOFTWARE TECHNOLOGY

 JULY/AUGUST 2021 | IEEE SOFTWARE 15

understanding but the combination of
both—in each engineering mind. Such
transformation means continuous learn-
ing and sharing of experiences.

F red Brooks, the famous computer
pioneer and chief engineer at
IBM, already understood the

relevance of systems engineering four
decades ago and underlined its rel-
evance: “The hardest single part of
building a software system is deciding
precisely what to build. No other part
of the work cripples the system if done
wrong. No other part is more difficult
to rectify later.”

References
1. C. Ebert and B. Tavernier, “Technol-

ogy trends: Strategies for the new

normal,” IEEE Softw., vol. 38, no. 2,

pp. 7–14, Mar. 2021. doi: 10.1109/

MS.2020.3043407.

2. International Council on Systems Engi-

neering (INCOSE): Vision for Systems

Engineering 2025. https://www

.incose.org/products-and-publications/

se-vision-2025 (accessed Apr. 4, 2021)

3. C. Ebert and A. Dubey, “Conver-

gence of enterprise IT and embedded

systems,” IEEE Softw., vol. 36, no. 3,

pp. 92–97, May 2019. doi: 10.1109/

MS.2019.2896508.

4. A. Bucchiaron et al., “What is the fu-

ture of modeling?,” IEEE Softw., vol.

38, no. 2, pp. 119–127, 2021.

5. C. Ebert and M. Paasivaara, “Scal-

ing agile,” IEEE Softw., vol. 34, no. 6,

pp. 98–103, Nov 2017. doi: 10.1109/

MS.2017.4121226.

6. D. L. Parnas, “Why software jewels

are rare,” Computer, vol. 29, no. 2,

pp. 57–60, Feb. 1996.

7. Object Management Group: Model

Driven Architecture. https://www

.omg.org/mda/ (accessed: Apr. 4,

2021)

8. Systems and Software Engineering.

System Life Cycle Processes, Interna-

tional Standardization Organization

(ISO), ISO/IEC/IEEE CD 15288,

Geneva, Switzerland. https://www

.iso.org/standard/81702.html (accessed

Apr. 4, 2021)

9. W. Böhm, M. Broy, B. Rumpe, S.

Schröck, K. Pohl, and C. Klein,

Model-Based Engineering of Col-

laborative Embedded Systems. Ex-

tensions of the SPES Methodology.

Heidelberg: Springer, 2021.

10. “TOGAF standard, Version 9.2.”

The Open Group. https://pubs

.opengroup.org/architecture/

togaf9-doc/arch/ (accessed: Apr.

4, 2021)

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MS.2021.3082585

