
0740 -7459 / 19©2019 I EEE 	 MAY/JUNE 2019 | IEEE SOFTWARE � 105

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

OPPORTUNISTIC DESIGN, AN
approach in which people develop new
software systems by routinely reus-
ing and combining components that
were not designed to be used together,
has become very popular. This emer-
gent pattern places focus on large-
scale reuse and developer convenience
with the developers “trawling” for
most suitable open source components
and modules online. The availability
of open source assets for almost all
imaginable domains has led to soft-
ware systems in which the visible
application code, as written by the
application developers themselves,

forms only the “tip of the iceberg,”
compared to the reused bulk that re-
mains mostly unknown to the devel-
opers. The actual reuse takes place
in an ad hoc, mix-and-match fash-
ion. In this article, we take a look at
this increasingly popular approach in
light of our industry experiences. We
argue that challenges associated with
such a development model are quite
different from traditional software
development and reuse.

A Silent Revolution in
Software Development
In the past 20 years, the World Wide
Web has strongly affected the way
people develop software. The emer-
gence of the software-as-a-service
model,2,20 Internet-based developer

forums (e.g., Stack Overflow, https://
stackoverflow.com), and open source
software repositories (e.g., GitHub,
https://github.com) have enabled an
approach in which people routinely
trawl online for ready-made solu-
tions for all kinds of problems; the
discovered libraries and code snip-
pets are included in applications
with little consideration or knowl-
edge about their technical quality
or details. This approach is all about
combining unrelated, often previously
unknown software and hardware ar-
tifacts by joining them with “duct
tape and glue code.”6 Depending on
one’s viewpoint and desired connota-
tion, such development is referred to
as opportunistic design,6 opportunis-
tic reuse, ad hoc reuse, scavenging,9

Software Reuse in the Era
of Opportunistic Design
Tommi Mikkonen and Antero Taivalsaari

Digital Object Identifier 10.1109/MS.2018.2884883
Date of publication: 16 April 2019

From the Editors

Software reuse has succeeded beyond expectations. Our industry has recently

added software of unknown provenance (SOUP) to commercial off-the-shelf

software (COTS) as the options available to architectural decision makers. Tommi

Mikkonen and Antero Taivalsaari reflect on the long-term implications, good and

bad, of rapidly assembling working solutions out of easy-to-reuse software pack-

ages and services by sharing stories from one of their latest projects that led to an

action plan for the community. —Cesare Pautasso and Olaf Zimmermann

INSIGHTS

106	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

software mashups, mashware,13 or
sometimes even frankensteining.6 The
resulting approach bears the imprint
of cargo-cult programming,12 which
is the ritual inclusion of code or pro-
gram structures for reasons the pro-
grammers do not fully understand.
Such programmers make no attempt
to understand how those components
work or how they might interfere with
other parts of the system.

Developers in droves have embraced
this approach, although it is widely
admitted that opportunistic designs
are not automatically compatible and
that such designs may require signifi-
cant architectural adjustments to
fulfill functional or nonfunctional
requirements.19 For instance, in client-
side web development, web mashups
have become very popular.1 In cloud
back-end development, the use of
what are called software of unknown
provenance (SOUP) components is
nowadays even more prevalent, given
the large number of available open-
source components and the apparent
complexity in building corresponding
functionality from scratch. In the lat-
ter domain, the popularity of opportu-
nistic design has exploded because of
the success of Node.js (https://nodejs
.org/) and its Node Package Manager
(NPM) ecosystem (https: //www
.npmjs.com/). Today, more than 700,000
reusable NPM modules are available
for nearly all imaginable tasks.

While opportunistic reuse can be
very convenient for developers, such
reuse is rather ad hoc in practice
compared to the systematic textbook
methodologies proposed for software
reuse two or three decades ago.8,11
The resulting systems are not carefully
crafted but instead resemble icebergs
in that only the “tip” is written by de-
velopers themselves, while the bulk of
the system comes from other sources
and remains invisible and often poorly

understood by the application pro-
grammer. Consequently, many of the
characteristics that have traditionally
been highly valued in software design
and implementation—such as per-
formance, small memory footprint,
consistent interfaces, ease of mainte-
nance, and fault tolerance—become
emergent and highly dependent on the
(mostly invisible) qualities of the ex-
ternal components. Granted, the im-
portance of such characteristics may
vary. For instance, when writing test-
ing tools for internal use at a company,
rapid progress is often valued far more
highly than small memory footprint
or interface consistency. However,
for many types of software systems—
especially those intended for regulated
domains (e.g., medical software)—
the use of third-party components
has traditionally been discouraged or
prohibited altogether because of these
characteristics.

In general, it has become virtually
impossible in recent years to develop
any significant software systems
without relying at least to some de-
gree on available component ecosys-
tems, such as the NPM ecosystem
previously mentioned. Opportu-
nistic reuse is common despite the
risks that components developed by
unknown developers, using unknown
methodologies, may contain un-
known and possibly harmful safety-
related characteristics. Component
selection is often based simply on
popularity ratings or recommenda-
tions from other developers.

From our experience, we understand
the software engineering challenges
arising from opportunistic design and
reuse. This article aims to raise aware-
ness of how profoundly this model
changes application development. We
will offer a brief real-world example
and provide a call for action and direc-
tions for further work.

A Motivating Example
As an example, let us use an indus-
trial Internet of Things (IoT) develop-
ment project we initiated about three
years ago. In that project, we needed
to construct a scalable cloud back
end for an IoT system that would col-
lect large amounts of measurement
data arriving from very data-inten-
sive measurement devices. The goals
of the system were threefold. In the
beginning, the system would act as
a technology demonstrator to show-
case the benefits of a live-streaming
end-to-end data platform. Soon there-
after, the system became the foun-
dation for a number of commercial
software products. In parallel, the
system was also used as a research
and exploration platform for IoT-re-
lated device-development activities.

Requirements
Unlike typical IoT systems that usually
collect point measurements only [i.e.,
relatively small amounts of data (such
as heart-rate measurements, GPS co-
ordinates, or altitude data) that are up-
loaded periodically], our system needed
to support incoming streaming data
(i.e., data that would be streamed in
continuously at high data rates). Such
cases are common, for instance, in the
virtual-reality/augmented-reality me-
dia domain as well as in certain types
of medical systems (e.g., in collecting
electrocardiogram measurements) or
industrial systems (e.g., manufacturing
control processes).

In addition to streaming data,
our system needed to provide support
for real-time data analytics, i.e., be able
to analyze the data in near real time as
the data are streamed in; process the
data; and generate responses, visual-
izations, and actions with minimal la-
tency. Furthermore, an extensive set of
query mechanisms had to be provided
for reading previously collected data

INSIGHTS

	 MAY/JUNE 2019 | IEEE SOFTWARE � 107

(time series) with various query param-
eters, e.g., from a certain sensor and
within a given time range. A notifica-
tion mechanism capable of generat-
ing notifications when data values met
certain predefined criteria was required
as well.

In addition, our system needed to
provide a lot of “bread-and-butter”
cloud back-end functionality, such as
user-identity management (user ac-
counts and access permissions), device
management, logging and monitoring
capabilities, and some administra-
tive tools for managing the overall
system. We also wanted to have a
flexible, scalable cloud-deployment
model that was not physically tied
to any particular machines, data
centers, or vendors. The deployment
model had to include the ability to
easily deploy multiple instances of the
entire cloud environment onto dif-
ferent types of cloud environments,

including OpenStack (https://www
.openstack.org/).

Architecture
Figure 1 provides a high-level over-
view of the architecture of the case
study. Functionally, the system can
be seen as an IoT data pipeline in
which the data flow from measure-
ment devices from the left toward
the web and mobile applications on
the right. In between, the cloud pro-
vides the necessary data acquisition,
analytics, storage, access, and noti-
fication mechanisms as well as many
other supporting components.

From the beginning, we wanted to
make it easy to add new functional-
ity, components, and application pro-
gramming interfaces (APIs) on top
of the base system so that the system
could be redeployed in different indus-
try verticals. A microservice-based ar-
chitecture16 was selected as a generic

solution for plugging in additional
components without interfering with
the rest of the system.

Component Selection and the
Development Approach
Given the small size of our original
development team, we knew that we
would not be able to write the entire
system from scratch. For instance, the
streaming data-acquisition and real-
time analytics functionality alone was
so complex that building it from the
ground up would have consumed
all of the development resources we
had for the entire project. Instead,
we wanted to make sure that our de-
velopment team had enough time to
focus on developing the differentiat-
ing, domain-specific microservices.
Thus, from the beginning, we decided
to rely extensively on available third-
party open source software. Luckily,
we had significant experience with

Measurement Devices

Security Perimeter

Web and Mobile
Applications

Administrative and
Monitoring Tools

Identity and
Access

Management
Domain-Specific Microservices

Data Storage

Data Access
and

Notifications

Data
Acquisition

Device
Management

Analytics Support

Deployment and Runtime Support

Logging and Monitoring Support

G
at

ew
ay

s

FIGURE 1. A diagram showing the high-level architecture of our case-study system.

INSIGHTS

108	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

IoT-related development work and
implementation components from
our past projects. This experience
was useful in selecting basic compo-
nents, since we knew how and how
well certain open-source technolo-
gies worked. That said, there were
dozens of other potential open source
component candidates entirely unfa-
miliar to us.

Node.js was chosen as the imple-
mentation technology for the plug-
gable microservices. In recent years,
Node.js has become one of the most
popular back-end development
technologies, and hence many readily
available packages exist for differ-
ent IoT- and deployment-related func-
tions. Docker (https://www.docker
.com/) and Docker Swarm were se-
lected for virtualizing the deployment
and runtime architecture. The actual
physical deployment architecture [e.g.,
the exact number of virtual machines
(VMs)] can vary based on the needs
of each deployment. It is also possible
to run the entire cloud environment
on a single machine (even just a lap-
top if it has enough memory) for test-
ing purposes. While this may sound
like a curiosity, it can actually be very
convenient and useful for testing new
features without having to deploy com-
ponents onto a farm of external com-
puters or VMs.

Measurements
Because of the large number of com-
ponents/services and the packag-
ing of the system components into
Docker images, the exact total size
of the system is not easy to measure.
A typical deployment of our system
consists of more than 30 Docker im-
ages, deployed onto 4–6 VMs. About
half of the services are written on
top of Node.js. In our Node.js-based
microservice implementations, the
number of NPM modules (transitive

closure of all of the NPM modules
pulled in by each microservice) varies
from a few dozen to more than 1,000
per microservice. Cumulatively, the
total number of different NPM mod-
ules (excluding duplicates) used by
the system exceeds 2,000. While
many of those NPM modules, such
as uuid, are very simple, there are
also significantly more complex ones,
such as core-js, shelljs, or redux.
Overall, we estimate that only about
5% of the source code of the system
was written by our developers, while
the vast majority comes from third-
party open source components.

Implications for Software
Engineering
Although the potential for software
reuse was high in the 1980s and early
1990s (e.g., Jones reported in 1984
that, on average, only 15% of code
was unique, novel, and specific to in-
dividual applications; the remaining
85% appeared to be common and
generic7), actual reuse rates remained
very low. Those days developers pre-
ferred writing their own code and
took pride in doing as much as pos-
sible from scratch. In fact, they were
effectively expected or forced to do
so, since third-party components were
not widely available or easy to find
before the advent of the web. Further-
more, before the widespread adoption
of open source software development,
components were rarely available for
free or with license terms favoring
commercial reuse.

Today, the situation is drama
tically different. The World Wide
Web and the widespread availability
of open source software have led to
a cultural shift in which software re-
use is no longer considered shameful.
For instance, in the aforementioned
Node.js ecosystem, there are nowa-
days more than 700,000 reusable

NPM modules (see https://www
.npmjs.com/). Today, many compa-
nies and individuals are proud of the
amount of the third-party code in
their products. To our surprise, we
recently found several automobile
advertisements and reviews in which
well-known car manufacturers, such
as Bentley and Volvo, boast about
the large amount of software in their
cars, as if it was categorically a good
thing.22 For instance, the 2018 ver-
sion of the Bentley Continental GT is
said to contain “93 processors, feed-
ing more than a 100 million lines
of code through eight kilometers of
wiring” (http: //edition.cnn.com/
style/article/bentley-continental-gt/
index.html). Arguably, this is largely
due to the traditional car design ap-
proach in which many features have
their own dedicated control systems,
leading to duplicate functions.17

In general, the opportunity to re-
use software from various origins
is reshaping both the way software
is being developed and the way it is
consumed. Compared to the 1980s
and 1990s, when the amount of re-
used software formed only a fraction
of the entire software system, the sit-
uation is now decidedly the opposite.
While opportunistic designs promise
short development times and rapid
deployment, developers are relying
more and more on code and APIs
that they do not understand well or
at all and yet are using them even
in domains that require high atten-
tion to security and safety. A good
example is the analysis provided in
Morszczyzna,14 where one particu-
lar set of dependencies is analyzed in
detail, together with an analysis of
associated problems.

We are concerned that the rapid
growth of software systems created
using opportunistic design will re-
sult in significant security problems.

INSIGHTS

	 MAY/JUNE 2019 | IEEE SOFTWARE � 109

Systems built with opportunistic
reuse often have so much invisible
code with so many dependencies
that they are impossible to analyze
by hand; the 2,000 plus NPM mod-
ules in our case-study system is a
good example of this. Furthermore,
the trend toward software systems in
which components are updated dy-
namically on the fly (even over the
air) results in dynamic dependencies
that cannot be analyzed statically.
The pace at which we get new ver-
sions and updates, enabled by such
techniques Continuous Deployment4
and DevOps,3 is such that it is be-
coming next to impossible to test all
of the combinations that may exist.
API-incompatible changes in any of
the underlying components may sud-
denly change behavior in unexpected
or undesired ways or, in the worst
case, render the entire system use-
less. Furthermore, removing a single
package from the repository can re-
sult in a failure in numerous, seem-
ingly unrelated projects.21

While such changes may be just a
nuisance in a simple desktop appli-
cation, they could be fatal in an em-
bedded software system, such as in
software controlling critical systems
of an automobile, airplane, or large
machinery. Such changes may also
result in security attacks caused by
the inadvertent injection of malicious
NPM modules with names similar
to those of popular modules. In fact,
there is a recent example in which
hackers injected malicious code into a
very widely used NPM module (with
more than 2 million downloads) with
the aim of surreptitiously stealing
money from bitcoin wallets. The in-
jection of malicious code remained
unknown to users from early October
until mid-November 2018.5

Leslie Lamport famously described
distributed systems as “one in which

the failure of a computer you didn’t
even know existed can render your
own computer unusable.”10 We have
our own similar view of modern
software development: It is charac-
terized by failures that occur because
there were changes in components
that you didn’t even know your
software depended on. While op-
portunistic design has been recog-
nized for more than a decade (for
instance, IEEE Software published
a special issue focusing on this theme
in November/December 200815),
not much has happened in terms
of concrete tools and other support
for developers.

Call to Action
The basic challenge in opportunistic
design is that it does not follow any
systematic, abstraction-driven ap-
proach. Instead, as characterized by
Hartmann et al.,6 developers cre-
ate significant systems by hacking,
mashing, and gluing together dis-
parate, continually evolving compo-
nents that were not designed to go
together. Developers publishing such
components often have no formal
training in creating high-quality soft-
ware components, and the developers
performing opportunistic, ad hoc re-
use might not have any professional
skills for selecting and combining
such components.

As a result of these trends, the soft-
ware industry is undergoing a para-
digm shift. Unlike in the past, when
software reuse was just an anomaly,
reuse is now becoming the norm for
any significant software-development
projects. Yet software reuse is oc-
curring in a very different way than
originally envisioned a few decades
ago. It is also quite surprising how
little attention these dramatic changes
and the current massive scale of re-
use have received in the software

engineering research community. In
fact, software reuse was even declared
dead in the late 1990s.18

The software engineering research
community needs a call to action.
Software reuse is finally occurring
in a very large scale, but the level of
awareness of opportunistic reuse and
the tip-of-the-iceberg development ap-
proach in the software engineering
research community has remained sur-
prisingly low. We argue that academic
researchers have not realized how sig-
nificantly the effortless availability of
vast numbers of open-software com-
ponents is affecting software develop-
ment. Meanwhile, today’s developers
are not generally familiar with useful
software reuse principles and prac-
tices from decades ago. In a way, soft-
ware reuse is “a lost art” that is now
being reinvented by practitioners with
little attention to extensive research
and development efforts in the 1980s
and 1990s.

What should be done about this?
We provide here a summary of pos-
sible actions and topics that offer re-
search opportunities ranging from
analytical work to constructive de-
velopment and risk management:

•	 systematic analysis of the com-
patibility of the most popu-
lar open source components
for key domains and recom-
mendations of best available
components for each area,
based on objective reviews and
measurements in real-world
applications

•	 study and definition of recom-
mended reuse patterns and com-
binations of the most popular
open source components

•	 tools for visualizing the static
and dynamic dependencies of all
the “underwater” components
in a tip-of-an-iceberg software

INSIGHTS

110	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

system that relies extensively
on SOUP components [prefer-
ably, the tools should enable the
monitoring of component evolu-
tion (e.g., dynamic, regularly
updated dependency charts) in
widely used component sub-
systems loaded on the fly from
third-party sources; visualizing
the dependencies by version
history in essence results in the
ability to replay the evolution of
analysis results]

•	 tools and techniques that enable
the development and testing
of “iceberg” software systems
within safe boundaries [such
sandboxing technologies are
especially important in complex
systems in which software runs
on multiple servers or VMs; for
instance, with Docker Compose
(https://docs.docker.com
/compose/), it is possible to
package an entire cloud onto
a single machine for testing
purposes ahead of deploy-
ing the system onto an actual
farm of servers or VMs; this

also supports the creation of
validated snapshots that can be
isolated from the evolution of
the component subsystem]

•	 tools and techniques that expose
programming errors as early as
possible, minimizing risks, and
allowing recovery with minimal
damage to the end users (such
techniques are important in per-
missive, error-tolerant web-based
systems that by default do not re-
port their errors until absolutely
necessary)

•	 risk-management guidance and
techniques that help assess the
risks associated with tip-of-the-
iceberg systems that depend fun-
damentally on rapidly evolving
third-party components.

The eventual solution to pro-
gramming the tip of the iceberg
will be developer education to

understand the contexts in which op-
portunistic design and tip-of-the-ice-
berg development are acceptable, and
where more risk-aware approaches are

needed. For instance, in highly regu-
lated areas, such as medical software
development, the use of SOUP com-
ponents requires detailed justification,
and the use of automatically updating
software components is outright pro-
hibited. To this end, practices and soft-
ware reuse principles developed in the
1980s and 1990s, especially in the area
of creating modular, well-documented,
and stable interfaces and reusable com-
ponents, provide a solid foundation to
build on.

References
	 1.	S. Aghaee and C. Pautasso, “End-

user programming for web mashups,”

in Proc. Int. Conf. Web Engineering,

2011, pp. 347–351.

	 2.	A. Bouzid and D. Rennyson, The Art

of SaaS: A Primer on the Fundamen-

tals of Building and Running a Suc-

cessful SaaS Business. Bloomington,

IN: Xlibris, 2015.

	 3.	P. Debois, “Devops: A software

revolution in the making,” J. Inform.

Technol. Manage., vol. 24, no. 8, pp.

3–39, 2011.

	 4.	M. Fowler, “ContinuousDelivery,”

MartinFowler.com, Apr. 2013. [On-

line]. Available: http://martinfowler

.com/bliki/ContinuousDelivery

.html

	 5.	D. Goodin, “Widely used open

source software contained

bitcoin-stealing backdoor,” Ars

Technica, Nov. 2018. [Online]. Avail-

able: https://arstechnica.com

/information-technology/2018/11

/hacker-backdoors-widely-

used-open-source-software-to-steal-

bitcoin/

	 6.	B. Hartmann, S. Doorley, and S. R.

Klemmer, “Hacking, mashing, gluing:

Understanding opportunistic design,”

Pervasive Comput., vol. 7, no. 3, pp.

46–54, 2008.

	 7.	T. C. Jones, “Reusability in

programming: A survey of the state

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

TOMMI MIKKONEN is a professor of software engineering at the

University of Helsinki. His research interests include web program-

ming, software architectures, and IoT systems. Contact him at

tommi.mikkonen@helsinki.fi.

ANTERO TAIVALSAARI is a Bell Labs fellow at Nokia Bell Labs.

Contact him at antero.taivalsaari@nokia.com.

INSIGHTS

	 MAY/JUNE 2019 | IEEE SOFTWARE � 111

of the art,” IEEE Trans. Softw. Eng.,

vol. SE-10, no. 5, pp. 488–494, 1984.

	 8.	Y. Kim and E. A. Stohr, “Software

reuse: Survey and research direc-

tions,” J. Manage. Inf. Syst., vol. 14,

no. 4, pp. 113–147, 1998.

	 9.	C. W. Krueger, “Software reuse,”

ACM Comput. Surv., vol. 24, no. 2,

pp. 131–183, 1992.

	10.	L. Lamport, “Distribution,” Micro-

soft, May 28, 1987. [Online]. Avail-

able: http://research.microsoft.com

/en-us/um/people/lamport/pubs

/distributed-system.txt

	11.	R. G. Lanergan and C. A. Grasso,

“Software engineering with reusable

designs and code,” IEEE Trans.

Softw. Eng., vol. SE-10, no. 5,

pp. 498–501, 1984.

	12.	E. Lippert, “Syntax, semantics,

Micronesian cults and novice pro-

grammers,” Microsoft, Mar. 1, 2004.

[Online]. Available: https://blogs

.msdn.microsoft.com/ericlippert

/2004/03/01/syntax-semantics-

micronesian-cults-and-novice-

programmers/

	13.	T. Mikkonen and A. Taivalsaari,

“The mashware challenge: Bridging

the gap between web development

and software engineering,” in Proc.

FSE/SDP Workshop Future of Soft-

ware Engineering Research, 2010,

pp. 245–250.

	14.	M. Morszczyzna, “What’s really

wrong with node_modules and why

this is your fault,” Hacker Noon, Dec.

18, 2017. [Online]. Available: https://

hackernoon.com/whats-really-wrong-

with-node-modules-and-why-this-

is-your-fault-8ac9fa893823

	15.	C. Ncube, P. Oberndorf, and A.

W. Kark, “Opportunistic software

systems development: Making systems

from what’s available,” IEEE Softw.,

vol. 25, no. 6, pp. 38–41, 2008.

	16.	S. Newman, Building Microservices:

Designing Fine-Grained Systems.

Sebastapol, CA: O’Reilly Media, 2015.

	17.	B. O’Donnell, “Your average car

is a lot more code-driven than you

think,” USA Today, June 28,

2016. [Online]. Available:

https://eu.usatoday.com

/story/tech/columnist/2016/06/28

/your-average-car-lot-more-code-

driven-than-you-think/86437052/

	18.	D. C. Schmidt, “Why software reuse

has failed and how to make it work

for you,” 1999. [Online]. Available:

https://www.dre.vanderbilt

.edu/~schmidt/reuse-lessons.html

	19.	M. Shaw, “Architectural issues in

software reuse: It’s not just the

functionality, it’s the packaging,”

ACM SIGSOFT Software Engineer-

ing Notes, vol. 20, pp. 3–6, 1995.

	20.	M. Turner, D. Budgen, and P. Brereton,

“Turning software into a service,” Com-

puter, vol. 36, no. 10, pp. 38–44, 2003.

	21.	C. Williams, “How one developer

just broke Node, Babel and thou-

sands of projects in 11 lines

of JavaScript,” The Register, Mar.

23, 2016. [Online]. Available:

https://www.theregister.co.uk

/2016/03/23/npm_left_pad_chaos/

	22.	D. Zax, “Many cars have a hundred

million lines of code,” MIT Technol.

Rev., Dec. 3, 2012. [Online]. Avail-

able: https://www.technologyreview

.com/s/508231/many-cars-have-

a-hundred-million-lines-of-code/

Access all your IEEE Computer
Society subscriptions at

computer.org
/mysubscriptions

The #1 AI Magazine
www.computer.org/intelligent

IE
EE

Cutting Edgestay
on the

P U T T I N G A I I N T O P R A C T I C E

IE
E

E

January/fEbruary 2016

Also in this issue:
 aI’s 10 to Watch 56
 real-Time Taxi Dispatching 68
 from flu Trends to Cybersecurity 84

www.computer.org/intelligent

IEEE
Ja

n
u

a
ry/FEBru

a
ry 2016

O
n

lin
e B

eh
A

v
iO

r
A

l A
n

A
ly

sis
VO

Lu
M

E 31 n
u

M
BEr 1

IS-31-01-C1 Cover-1 January 11, 2016 6:06 PM

IEEE Intelligent Systems provides peer-

reviewed, cutting-edge articles on the

theory and applications of systems

that perceive, reason, learn, and

act intelligently.

of Artificial Intelligence

Digital Object Identifier 10.1109/MS.2019.2906533

