# Uncertainty and Probabilistic Reasoning

#### 1 The Need of Uncertainty Reasoning

- Humans easily reason with uncertain (not 100% correct) statements and knowledge.
- Classical logic needs 100% correct statements.
- Probability theory needs lots of data to compute conditional probabilities.
- Rules with certainty factors are oversimplified model.

# 2 Uncertainty Reasoning – Basic Terms

- Random variable: term in predicate calculus that may take a number of values (including continous variables).
- Variable domain: dom(x) = the set of possible values of x.
- Statement: Boolean expression of variable assignments  $(x_i = v_j)$ . For example,  $A = (outlook = rain) \lor (temperature = cool) \lor \neg (wind = strong)$ .
- Probability: measure of confidence in a statement A. If  $P(A) = 0 \to 100\%$  confidence that A is false,  $P(A) = 1 \to 100\%$  that A is true. If P(A) is between 0 and 1 this does not mean that A is "partially true", rather this reflects our uncertainty about the actual truth value of A.
- Probability distribution: the probabilities of each value of a random variable. If  $dom(x) = \{v_1, ..., v_n\}$ , then  $\sum_{i=1}^n P(x = v_i) = 1$ .
- Prior probability: probability without any additional information about a statement.
- Conditional probability: probability when the values of other random variables are known. For example, P(temperature = cool|humidity = low).

# 3 Uncertainty Reasoning – Basic Formulas

- $P(A \lor B) = P(A) + P(B) P(A \land B)$
- A, B independent (knowing the one does not change the probabilty of the other),  $P(A \wedge B) = P(A)P(B)$ .
- Disjoint events: never happen together,  $P(A \wedge B) = 0$ .
- Conditional probability:  $P(A|B) = \frac{P(A \wedge B)}{P(B)}$
- Bayes Theorem:  $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

#### 4 Probabilistic Model

- Atomic event:  $(x_1 = v_1) \land (x_2 = v_2) \land ... \land (x_n = v_n)$ , where  $x_1, ..., x_n$  are random variables. Describes a state of the world.
- Joint probability distribution n-dimensional table with  $m_i$  cells (i = 1, ..., n) along each dimension, if  $x_i$  has  $m_i$  possible values. Each cell shows the probability of the corresponding atomic event. For example:

|              | toothache=true | toothache = false |
|--------------|----------------|-------------------|
| cavity= true | 0.04           | 0.06              |
| cavity=false | 0.01           | 0.89              |

• Given the joint probability distribution the probability of any even can be found. For example:

$$P(cavity = true) = 0.04 + 0.06 = 0.1$$

$$P(cavity = true \lor toothache = true) = 0.04 + 0.01 + 0.06 = 0.11$$

$$P(cavity = true | toothache = true) = \frac{P(cavity = true \land toothache = true)}{P(toothache = true)} = \frac{0.04/(0.04 + 0.01) = 0.8}{0.04/(0.04 + 0.01)} = 0.8$$

#### 5 Probabilistic Inference

- Using the joint distribution
- Using Bayes theorem
  - Geven: e a set of symptoms,  $d_1, ..., d_n$  diagnoses,  $P(d_i)$  and  $P(e|d_i)$ , i = 1, ..., n are also known.
  - Compute  $P(d_i|e)$  for each i and find the most probable diagnosis given the symptoms e.

$$P(d_i|e) = \frac{P(d_i)P(e|d_i)}{P(e)}$$

-P(e) can be computed (if needed) by using the formulas:

$$\sum_{i=1}^{n} P(d_i|e) = \sum_{i=1}^{n} \frac{P(d_i)P(e|d_i)}{P(e)} = 1$$

$$P(e) = \sum_{i=1}^{n} P(d_i)P(e|d_i)$$

- Computing  $P(e|d_i)$  requires enumerating all possible combinations of values of the atomic symptoms contained in e (exponential complexity).
- Inference with the independence assumption ("Naive" Bayes).
  - Assuming that the atomic symptoms in  $e = \{e_1, ..., e_k\}$  are independent:

$$P(e|d_i) = \prod_{j=1}^k P(e_j|d_i)$$

- $-e_j$  (j=1,...,k) can be easily computed from observations or determined by an expert.
- Example:

| Example.    |         |      |        |  |
|-------------|---------|------|--------|--|
| Probability | healthy | flu  | alergy |  |
| P(d)        | 0.9     | 0.05 | 0.05   |  |
| P(sneeze d) | 0.1     | 0.9  | 0.9    |  |
| P(cough d)  | 0.1     | 0.8  | 0.7    |  |
| P(fever d)  | 0.01    | 0.7  | 0.4    |  |

Assume the symptoms e are sneezing and cough, but no fever. Then:

P(healthy|e) = (0.9)(0.1)(0.1)(0.99)/P(e) = 0.0089/P(e)

P(flu|e) = (0.05)(0.9)(0.8)(0.3)/P(e) = 0.01/P(e)

 $P(\mathbf{alergy}|e) = (0.05)(0.9)(0.7)(0.6)/P(e) = 0.019/P(e)$ 

Normalization: P(e) = 0.0089 + 0.01 + 0.019 = 0.0379

P(healthy|e) = 0.23

P(flu|e) = 0.26

 $P(\mathbf{alergy}|e) = 0.50$ 

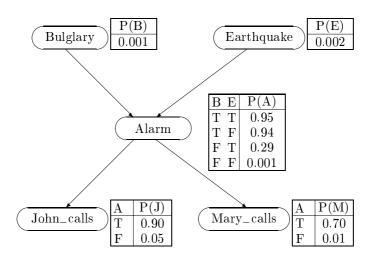


Figure 1: A Bayesian Net

# 6 Bayesian (Believe) Nets

- The independence assumption is too strong and almost never present in practice.
- Bayesian (Believe) Nets: using an acyclic graph to represent the dependencies between variables (a concise representation of the complete joint distribution).
- Each random variable is represented by a node.
- Links describe direct causal relations.
- For each node there is a conditional probability table (CPT). See the example in figure 1.
- Bayes Nets define implicitly the joint distribution of the variables in the nodes. For example, if  $x_1, ..., x_n$  are random variables and  $P(v_1, ..., v_n)$  is the joint probability that they get the values  $v_1, ..., v_n$  respectively, then:

$$P(v_1,...,v_n) = \prod_{i=1}^n P(v_i|Parents(x_i)),$$

where  $P(v_i|Parents(x_i))$  is the conditional probability of  $x_i = v_i$  given the values of the parent variables of  $x_i$ ,  $Parents(x_i)$ . For example:

$$P(J, M, A, \neg B, \neg E) = 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 = 0.000628$$

#### 7 Inference with BN

Given the values of a subset of variables (evidence variables) find the probabilities of another subset of variables (query variables).

- Diagnosis: inference from evidence to cause. For example, P(B|J) = ?
- Prediction: inference from cause to evidence. For example, P(J|B) = ?
- Intercausal: among causes of an evidence. For example, P(B|E) = ?
- Mixed, for example:  $P(A|J \land \neg E) = ?$

# 8 Algorithms for implementing the inference in BN

- Exact and approximate algorithms.
- Computing the full joint distribution (exact).
- Propagating evidence computing the probabilities of all variables according to the evidence. Iterative modification of the probabilities by message passing between nodes: successors → parents and parents → successors, beginning with the evidence variables.
- Algorithms led by the query variables (do not compute all variables, approximate).
- In general the problem is exponential with the number of variables.
- For special cases of BN's there exists polynomial complexity algorithms.