Uncertainty and Probabilistic Reasoning

1 The Need of Uncertainty Reasoning

e Humans easily reason with uncertain (not 100% correct) statements and knowl-
edge.

e Classical logic needs 100% correct statements.
e Probability theory needs lots of data to compute conditional probabilities.

e Rules with certainty factors are oversimplified model.

2 Uncertainty Reasoning — Basic Terms

e Random wvariable: term in predicate calculus that may take a number of values
(including continous variables).

e Variable domain: dom(z) = the set of possible values of .

e Statement: Boolean expression of variable assignments (z; = v;). For example,
A=(outlook = rain) V (temperature = cool) V = ( wind = strong).

e Probability: measure of confidence in a statement A. If P(A) = 0 — 100%
confidence that A is false, P(A) =1 — 100% that A is true. If P(A) is between
0 and 1 this does not mean that A is ”partially true”, rather this reflects our
uncertainty about the actual truth value of A.

e Probability distribution: the probabilities of each value of a random variable. If
dom(z) = {v1,...,v,}, then ¥ | P(x = v;) = 1.

e Prior probability: probability without any additional information about a state-
ment.

e Conditional probability: probability when the values of other random variables
are known. For example, P(temperature = cool|humidity = low).



3 Uncertainty Reasoning — Basic Formulas

e P(AVB)=P(A)+ P(B)— P(AAB)

e A, B — independent (knowing the one does not change the probabilty of the
other), P(ANA B) = P(A)P(B).

e Disjoint events: never happen together, P(A A B) = 0.
e Conditional probability: P(A|B) = Pgég?)

e Bayes Theorem: P(A|B) = %

4 Probabilistic Model
o Atomic event: (x1 = v1) A (z9 = v3) A... A (x,, = v,), where z1, ..., ¢, are random
variables. Describes a state of the world.

e Joint probability distribution — n-dimensional table with m; cells (i = 1,...,n)
along each dimension, if x; has m; possible values. Each cell shows the proba-
bility of the corresponding atomic event. For example:

toothache=true | toothache=false
cavity= true 0.04 0.06
cavity=false 0.01 0.89

e Given the joint probability distribution the probability of any even can be found.
For example:

P(cavity = true) = 0.04 + 0.06 = 0.1

P(cavity = true V toothache = true) = 0.04 + 0.01 + 0.06 = 0.11

P(cavity = true A toothache = true
P(cavity = true|toothache = true) = ( yp(t thache = true) ) =
oothache = true

0.04/(0.04+0.01) = 0.8




5 Probabilistic Inference

e Using the joint distribution
e Using Bayes theorem
— Geven: e — a set of symptoms, di,...,d, — diagnoses, P(d;) and P(e|d;),
¢t =1,...,n are also known.

— Compute P(d;|e) for each ¢ and find the most probable diagnosis given the
symptoms e.
P(di) P(e|d:)
P(e)
— P(e) can be computed (if needed) by using the formulas:
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P(d;le) =
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— Computing P(e|d;) requires enumerating all possible combinations of values
of the atomic symptoms contained in e (ezponential complezity).

e Inference with the independence assumption (”Naive” Bayes).

— Assuming that the atomic symptoms in e = {eq, ..., e} are independent:
k
Pleld;) = ]I P(ej|di)
j=1

—¢€j (j =1,..., k) can be easily computed from observations or determined by

an expert.

— Example:
Probability | healthy | flu | alergy
P(d) 0.9 0.05]0.05

P(sneeze|ld) | 0.1 0.9 0.9
P(coughld) |0.1 0.8 |0.7
P(fever|d) |0.01 0.7 104
Assume the symptoms e are sneezing and cough, but no fever. Then:
P(healthyle) = (0.9)(0.1)(0.1)(0.99)/P(e) = 0.0089/ P(e)
P(flule) = (0.05)(0.9)(0.8)(0.3)/P(e) = 0.01/P(e)
P(alergyle) = (0.05)(0.9)(0.7)(0.6)/P(e) = 0.019/P(e)
Normalization: P(e) = 0.0089 4 0.01 + 0.019 = 0.0379
P(healthyle) = 0.23
P(flule) = 0.26
P(alergyle) = 0.50
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Figure 1: A Bayesian Net

6 Bayesian (Believe) Nets

e The independence assumption is too strong and almost never present in practice.

e Bayesian (Believe) Nets: using an acyclic graph to represent the dependencies
between variables (a concise representation of the complete joint distribution).

e Each random variable is represented by a node.

e Links describe direct causal relations.

e For each node there is a conditional probability table (CPT). See the example
in figure 1.

e Bayes Nets define implicitly the joint distribution of the variables in the nodes.
For example, if z1, ..., z,, are random variables and P(vy, ..., v,) is the joint prob-
ability that they get the values vy, ..., v, respectively, then:

P(vy,...,v,) = [[ P(vi|Parents(z;)),
i=1

where P(v;|Parents(x;)) is the conditional probability of z; = v; given the val-
ues of the parent variables of x;, Parents(x;). For example:

P(J,M,A,~B,~E) =0.9 x 0.7 x 0.001 x 0.999 x 0.998 = 0.000628



7 Inference with BN

Given the values of a subset of variables (evidence variables) find the probabilities
of another subset of variables (query variables).

e Diagnosis: inference from evidence to cause. For example, P(B|J) =7
e Prediction: inference from cause to evidence. For example, P(J|B) =7
e Intercausal: among causes of an evidence. For example, P(B|E) =7

e Mixed, for example: P(A|J A -E) =7

8 Algorithms for implementing the inference in BN

e Eixact and approximate algorithms.
e Computing the full joint distribution (exact).

e Propagating evidence — computing the probabilities of all variables according
to the evidence. Iterative modification of the probabilities by message passing
between nodes: successors — parents and parents — successors, beginning with
the evidence variables.

e Algorithms led by the query variables (do not compute all variables, approxi-
mate).

e In general the problem is exponential with the number of variables.

e For special cases of BN’s there exists polynomial complexity algorithms.



