Inferring rudimentary rules

- 1R: learns a 1-level decision tree
 - ◆ In other words, generates a set of rules that all test on one particular attribute
- Basic version (assuming nominal attributes)
 - One branch for each of the attribute's values
 - ◆ Each branch assigns most frequent class
 - ◆ Error rate: proportion of instances that don't belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate

Pseudo-code for 1R

```
For each attribute,

For each value of the attribute, make a rule as follows:

count how often each class appears

find the most frequent class

make the rule assign that class to this attribute-value

Calculate the error rate of the rules

Choose the rules with the smallest error rate
```

Note: "missing" is always treated as a separate attribute value

Evaluating the weather attributes

Outlook	Temp.	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Attribute	Rules	Errors	Total errors
Outlook	$Sunny \to No$	2/5	4/14
	$Overcast \to Yes$	0/4	
	$\text{Rainy} \rightarrow \text{Yes}$	2/5	
Temperature	$Hot \to No^{\star}$	2/4	5/14
	$Mild \to Yes$	2/6	
	$Cool \to Yes$	1/4	
Humidity	$High \to \ No$	3/7	4/14
	$\text{Normal} \to \text{Yes}$	1/7	
Windy	$False \to Yes$	2/8	5/14
	$True \to No^*$	3/6	

Dealing with numeric attributes

- Numeric attributes are discretized: the range of the attribute is divided into a set of intervals
 - ◆ Instances are sorted according to attribute's values
 - Breakpoints are placed where the (majority) class changes (so that the total error is minimized)
- Example: temperature from weather data

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No
```

The problem of overfitting

- Discretization procedure is very sensitive to noise
 - ◆ A single instance with an incorrect class label will most likely result in a separate interval
- Also: time stamp attribute will have zero errors
- Simple solution: enforce minimum number of instances in majority class per interval
- Weather data example (with minimum set to 3):

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes P No P Yes Yes Yes | No No Yes P Yes Yes | No P Yes Yes P No
```

Result of overfitting avoidance

Final result for for temperature attribute:

64 65 68 69 70 71 72 72 75 75 80 81 83 85 Yes No Yes Yes Yes No No Yes Yes Yes No Yes No

Resulting rule sets:

Attribute	Rules	Errors	Total errors
Outlook	$Sunny \to No$	2/5	4/14
	$Overcast \to Yes$	0/4	
	$\text{Rainy} \rightarrow \text{Yes}$	2/5	
Temperature	\leq 77.5 \rightarrow Yes	3/10	5/14
	$> 77.5 \rightarrow No^*$	2/4	
Humidity	\leq 82.5 \rightarrow Yes	1/7	3/14
	> 82.5 and \leq 95.5 \rightarrow No	2/6	
	$> 95.5 \rightarrow Yes$	0/1	
Windy	$False \to Yes$	2/8	5/14
	$True \to No^*$	3/6	

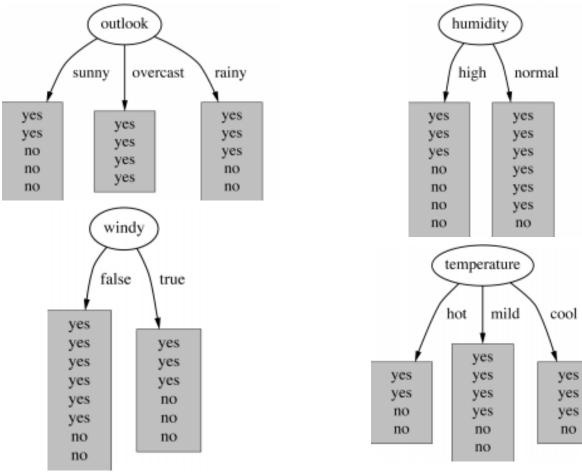
Discussion of 1R

- 1R was described in a paper by Holte (1993)
 - ◆ Contains an experimental evaluation on 16 datasets (using *cross-validation* so that results were representative of performance on future data)
 - Minimum number of instances was set to 6 after some experimentation
 - ◆ 1R's simple rules performed not much worse than much more complex decision trees
- Simplicity first pays off!

Constructing decision trees

- Normal procedure: top down in recursive divideand-conquer fashion
 - ◆ First: attribute is selected for root node and branch is created for each possible attribute value
 - ◆ Then: the instances are split into subsets (one for each branch extending from the node)
 - ◆ Finally: procedure is repeated recursively for each branch, using only instances that reach the branch
- Process stops if all instances have the same class

Which attribute to select?



A criterion for attribute selection

- Which is the best attribute?
 - ◆ The one which will result in the smallest tree
 - Heuristic: choose the attribute that produces the "purest" nodes
- Popular impurity criterion: information gain
 - Information gain increases with the average purity of the subsets that an attribute produces
- Strategy: choose attribute that results in greatest information gain

Computing information

- Information is measured in bits
 - Given a probability distribution, the info required to predict an event is the distribution's *entropy*
 - Entropy gives the information required in bits (this can involve fractions of bits!)
- Formula for computing the entropy:

entropy(
$$p_1, p_2, ..., p_n$$
) = $-p_1 \log p_1 - p_2 \log p_2 ... - p_n \log p_n$

Example: attribute "Outlook"

"Outlook" = "Sunny":

$$\inf_{(2,3]} = \exp_{(2/5,3/5)} = -2/5\log(2/5) - 3/5\log(3/5) = 0.971 \text{ bits}$$

• "Outlook" = "Overcast":

$$info([4,0]) = entropy(1,0) = -1log(1) - 0log(0) = 0 bits$$

Note: this is normally not defined.

"Outlook" = "Rainy":

$$\inf([3,2]) = \exp(3/5,2/5) = -3/5\log(3/5) - 2/5\log(2/5) = 0.971 \text{ bits}$$

Expected information for attribute:

info([3,2],[4,0],[3,2]) =
$$(5/14)\times0.971+(4/14)\times0+(5/14)\times0.971$$

= 0.693 bits

Computing the information gain

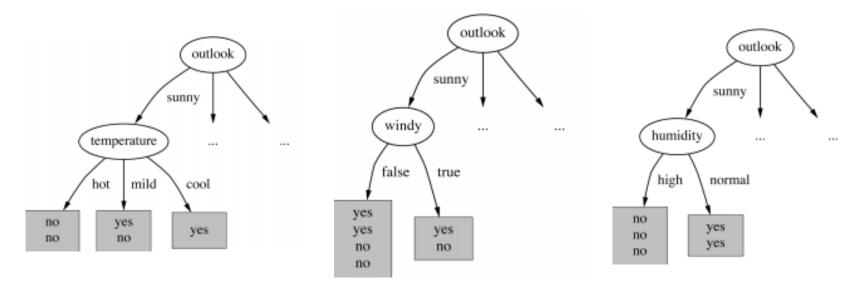
Information gain: information before splitting – information after splitting

```
gain("Outlook") = info([9,5]) - info([2,3],[4,0,[3,2]) = 0.940 - 0.693
= 0.247 bits
```

Information gain for attributes from weather data:

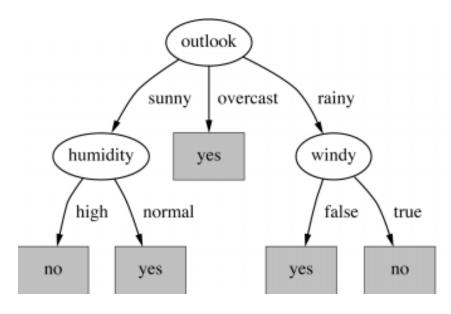
```
gain("Outlook") = 0.247 bits
gain("Temperatue") = 0.029 bits
gain("Humidity") = 0.152 bits
gain("Windy") = 0.048 bits
```

Continuing to split



gain("Temperatue") = 0.571 bits gain("Humidity") = 0.971 bits gain("Windy") = 0.020 bits

The final decision tree



- Note: not all leaves need to be pure; sometimes identical instances have different classes
 - ⇒ Splitting stops when data can't be split any further

Wishlist for a purity measure

- Properties we require from a purity measure:
 - ♦ When node is pure, measure should be zero
 - ♦ When impurity is maximal (i.e. all classes equally likely), measure should be maximal
 - ◆ Measure should obey multistage property (i.e. decisions can be made in several stages):
 measure([23,4])=measure([27])+(7/9)×measure([34])
- Entropy is the only function that satisfies all three properties!

Some properties of the entropy

The multistage property:

entropy
$$(p,q,r)$$
 = entropy $(p,q+r)+(q+r)\times$ entropy $(\frac{q}{q+r},\frac{r}{q+r})$

Simplification of computation:

$$\inf_{\text{o}([2,3,4]) = -2/9 \times \log(2/9) - 3/9 \times \log(3/9) - 4/9 \times \log(4/9)} = [-2\log_2 - 3\log_3 - 4\log_4 + 9\log_9]/9$$

 Note: instead of maximizing info gain we could just minimize information

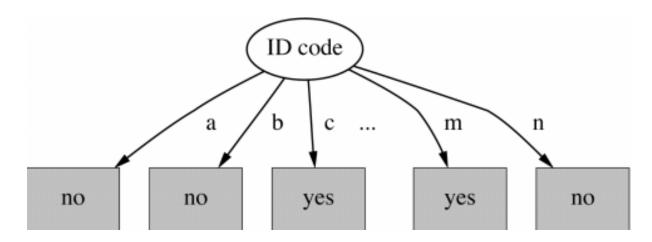
Highly-branching attributes

- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values
 - ⇒ Information gain is biased towards choosing attributes with a large number of values
 - ⇒ This may result in *overfitting* (selection of an attribute that is non-optimal for prediction)
- Another problem: fragmentation

The weather data with ID code

ID code	Outlook	Temp.	Humidity	Windy	Play
А	Sunny	Hot	High	False	No
В	Sunny	Hot	High	True	No
С	Overcast	Hot	High	False	Yes
D	Rainy	Mild	High	False	Yes
Е	Rainy	Cool	Normal	False	Yes
F	Rainy	Cool	Normal	True	No
G	Overcast	Cool	Normal	True	Yes
Н	Sunny	Mild	High	False	No
1	Sunny	Cool	Normal	False	Yes
J	Rainy	Mild	Normal	False	Yes
K	Sunny	Mild	Normal	True	Yes
L	Overcast	Mild	High	True	Yes
M	Overcast	Hot	Normal	False	Yes
N	Rainy	Mild	High	True	No

Tree stump for ID code attribute



Entropy of split:

 $\inf_{0}(\text{"ID code"}) = \inf_{0}([0,1]) + \inf_{0}([0,1]) + \dots + \inf_{0}([0,1]) = 0 \text{ bits}$

⇒ Information gain is maximal for ID code (namely 0.940 bits)

The gain ratio

- Gain ratio: a modification of the information gain that reduces its bias
- Gain ratio takes number and size of branches into account when choosing an attribute
 - ◆ It corrects the information gain by taking the intrinsic information of a split into account
- Intrinsic information: entropy of distribution of instances into branches (i.e. how much info do we need to tell which branch an instance belongs to)

Computing the gain ratio

- Example: intrinsic information for ID code info([1,1,...,1)= $14\times(-1/14\times\log 1/14)=3.807$ bits
- Value of attribute decreases as intrinsic information gets larger
- Definition of gain ratio:

$$gain_ratio("Attribute") = \frac{gain("Attribute")}{intrinsic_info("Attribute")}$$

Example: gain_ratio("ID_code") = $\frac{0.940 \text{ bits}}{3.807 \text{ bits}} = 0.246$

Gain ratios for weather data

Outlook		Temperature	
Info:	0.693	Info:	0.911
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.362
Gain ratio: 0.247/1.577	0.156	Gain ratio: 0.029/1.362	0.021
Humidity		Windy	
Info:	0.788	Info:	0.892
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049

More on the gain ratio

- "Outlook" still comes out top
- However: "ID code" has greater gain ratio
 - ◆ Standard fix: *ad hoc* test to prevent splitting on that type of attribute
- Problem with gain ratio: it may overcompensate
 - May choose an attribute just because its intrinsic information is very low
 - Standard fix: only consider attributes with greater than average information gain

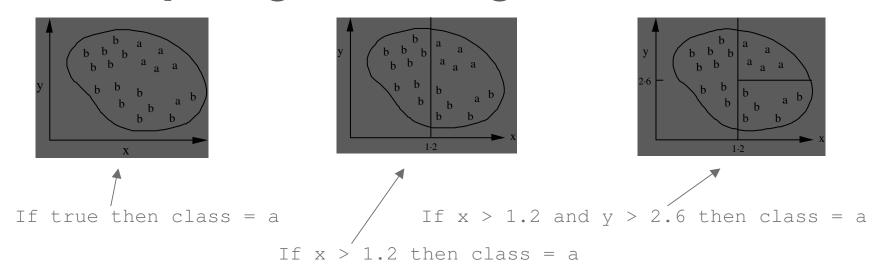
Discussion

- Algorithm for top-down induction of decision trees ("ID3") was developed by Ross Quinlan
 - Gain ratio just one modification of this basic algorithm
 - ◆ Led to development of C4.5, which can deal with numeric attributes, missing values, and noisy data
- Similar approach: CART
- There are many other attribute selection criteria!
 (But almost no difference in accuracy of result.)

Covering algorithms

- Decision tree can be converted into a rule set
 - ◆ Straightforward conversion: rule set overly complex
 - ◆ More effective conversions are not trivial
- Strategy for generating a rule set directly: for each class in turn find rule set that covers all instances in it (excluding instances not in the class)
- This approach is called a covering approach because at each stage a rule is identified that covers some of the instances

Example: generating a rule



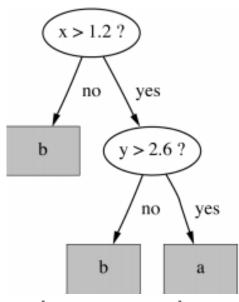
Possible rule set for class "b":

```
If x \le 1.2 then class = b
If x > 1.2 and y \le 2.6 then class = b
```

More rules could be added for "perfect" rule set

Rules vs. trees

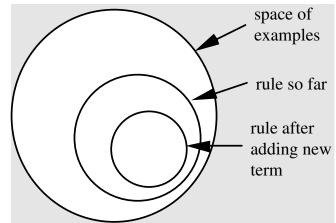
 Corresponding decision tree: (produces exactly the same predictions)



- But: rule sets can be more perspicuous when decision trees suffer from replicated subtrees
- Also: in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

A simple covering algorithm

- Generates a rule by adding tests that maximize rule's accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - ◆ But: decision tree inducer maximizes overall purity
- Each new test reduces rule's coverage:



Selecting a test

- Goal: maximizing accuracy
 - ★ t: total number of instances covered by rule
 - ◆ p: positive examples of the class covered by rule
 - ◆ t-p: number of errors made by rule
 - \Rightarrow Select test that maximizes the ratio p/t
- We are finished when p/t = 1 or the set of instances can't be split any further

Example: contact lenses data

■ Rule we seek: If ? then recommendation = hard

Possible tests:

Age = Young	2/8
Age = Pre-presbyopic	1/8
Age = Presbyopic	1/8
Spectacle prescription = Myope	3/12
Spectacle prescription = Hypermetrope	1/12
Astigmatism = no	0/12
Astigmatism = yes	4/12
Tear production rate = Reduced	0/12
Tear production rate = Normal	4/12

Modified rule and resulting data

Rule with best test added:

If astigmatics = yes then recommendation = hard

Instances covered by modified rule:

Age	Spectacle	Astigmatism	Tear production	Recommended
	prescription		rate	lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Муоре	Yes	Reduced	None
Pre-presbyopic	Муоре	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Муоре	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Further refinement

■ Current state: If astigmatism = yes and ? then recommendation = hard

Possible tests:

Age = Young	2/4
Age = Pre-presbyopic	1/4
Age = Presbyopic	1/4
Spectacle prescription = Myope	3/6
Spectacle prescription = Hypermetrope	1/6
Tear production rate = Reduced	0/6
Tear production rate = Normal	4/6

Modified rule and resulting data

Rule with best test added:

```
If astigmatics = yes and tear production rate = normal then recommendation = hard
```

Instances covered by modified rule:

Age	Spectacle	Astigmatism	Tear production	Recommended
	prescription		rate	lenses
Young	Муоре	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Муоре	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Further refinement

Current state:
If astigmatism = yes and
tear production rate = normal and ?
then recommendation = hard

Possible tests:

```
Age = Young 2/2

Age = Pre-presbyopic 1/2

Age = Presbyopic 1/2

Spectacle prescription = Myope 3/3

Spectacle prescription = Hypermetrope 1/3
```

- Tie between the first and the fourth test
 - ♦ We choose the one with greater coverage

The result

Final rule:

```
If astigmatism = yes and
  tear production rate = normal and
  spectacle prescription = myope
  then recommendation = hard
```

Second rule for recommending "hard lenses":
 (built from instances not covered by first rule)

```
If age = young and astigmatism = yes and
tear production rate = normal then recommendation = hard
```

- These two rules cover all "hard lenses":
 - Process is repeated with other two classes

Pseudo-code for PRISM

```
For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A = v to the left-hand side of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A = v to R
Remove the instances covered by R from E
```

Rules vs. decision lists

- PRISM with outer loop removed generates a decision list for one class
 - Subsequent rules are designed for rules that are not covered by previous rules
 - But: order doesn't matter because all rules predict the same class
- Outer loop considers all classes separately
 - ◆ No order dependence implied
- Problems: overlapping rules, default rule required

Separate and conquer

- Methods like PRISM (for dealing with one class) are separate-and-conquer algorithms:
 - ◆ First, a rule is identified
 - Then, all instances covered by the rule are separated out
 - ◆ Finally, the remaining instances are "conquered"
- Difference to divide-and-conquer methods:
 - Subset covered by rule doesn't need to be explored any further