Inferring rudimentary rules

= 1R:learns a 1-level decision tree

¢ In other words, generates a set of rules that all test
on one particular attribute

= Basic version (assuming nominal attributes)
+ One branch for each of the attribute’s values
o Each branch assigns most frequent class

o Error rate: proportion of instances that don’t belong
to the majority class of their corresponding branch

¢ Choose attribute with lowest error rate

10/25/2000

Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears

find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of the rules

Choose the rules with the smallest error rate

= Note: “missing” is always treated as a separate
attribute value

10/25/2000

Evaluating the weather attributes

Outlook Temp. Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No

Attribute Rules Errors Total
errors
Outlook Sunny — No 2/5 4/14
Overcast —» Yes 0/4
Rainy — Yes 2/5
Temperature Hot — No* 2/4 5/14
Mild — Yes 2/6
Cool — Yes 1/4
Humidity High — No 3/7 4/14
Normal — Yes 1/7
Windy False — Yes 2/8 5/14
True — No* 3/6

10/25/2000

Dealing with numeric attributes

= Numeric attributes are discretized: the range of the
attribute is divided into a set of intervals

¢ Instances are sorted according to attribute’s values

o Breakpoints are placed where the (majority) class
changes (so that the total error is minimized)

= Example: temperature from weather data

64 65 68 69 70 172 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

10/25/2000 7

The problem of overfitting

= Discretization procedure is very sensitive to noise

¢ A single instance with an incorrect class label will
most likely result in a separate interval

= Also: time stamp attribute will have zero errors

= Simple solution: enforce minimum number of
instances in majority class per interval

= Weather data example (with minimum set to 3):

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes @ No ©® Yes Yes Yes | No No Yes @ Yes Yes | No @ vYes vYes @ No

10/25/2000 8

Result of overfitting avoidance

= Final result for for temperature attribute:

64 65 68

69 70

Yes No Yes Yes Yes@ No No Yes Yes Yes | No Yes

= Resulting
rule sets:

10/25/2000

/1 72 72 75 75 80 81 83 85
Yes No
Attribute Rules Errors Total errors
Outlook Sunny — No 2/5 4/14
Overcast — Yes 0/4
Rainy — Yes 2/5
Temperature <775 — Yes 3/10 5/14
>77.5 - No* 2/4
Humidity <825 — Yes 1/7 3/14
>825and <955 —->No 2/6
>95.5 - Yes 0/1
Windy False — Yes 2/8 5/14
True — No* 3/6

Discussion of 1R

= 1R was described in a paper by Holte (1993)

+ Contains an experimental evaluation on 16
datasets (using cross-validation so that results were
representative of performance on future data)

¢ Minimum number of instances was set to 6 after
some experimentation

o 1R’s simple rules performed not much worse than
much more complex decision trees

= Simplicity first pays off!

10/25/2000 10

Constructing decision trees

= Normal procedure: top down in recursive divide-
and-conquer fashion

o First: attribute is selected for root node and branch
IS created for each possible attribute value

& Then: the instances are split into subsets (one for
each branch extending from the node)

¢ Finally: procedure is repeated recursively for each
branch, using only instances that reach the branch

= Process stops if all instances have the same class

10/25/2000 24

Which attribute to select?

10/25/2000

25

A criterion for attribute selection

= Which is the best attribute?
¢ The one which will result in the smallest tree

+ Heuristic: choose the attribute that produces the
“purest” nodes

= Popular impurity criterion: information gain

¢ Information gain increases with the average purity
of the subsets that an attribute produces

= Strategy: choose attribute that results in greatest
information gain

10/25/2000 26

Computing information

= Information is measured in bits

+ Given a probability distribution, the info required to
predict an event is the distribution’s entropy

¢ Entropy gives the information required in bits (this
can involve fractions of bits!)

= Formula for computing the entropy:

entropy(p,, p,»..., p,) = —p,logp, — p,logp, ...— p,logp,

10/25/2000 27

Example: attribute “Outlook”

“Outlook” = “Sunny”:
info([2,3]) = entropy(2/5,3/5) =-2/5log(2/5)—-3/5log(3/5) =0.971 bits

“Outlook” = “Overcast™ =

info([4,0]) = entropy(1,0) =—1log(1) —0log(0) =0 bits
“Outlook” = “Rainy”:

info([3,2]) = entropy(3/5,2/5) =-3/5log(3/5)—2/51og(2/5) =0.971 bits
Expected information for attribute:

info([3,2],[4,0],[3,2]) =(5/14)x0.971+(4/14)x0+(5/14)x0.971
=(.693 bits

10/25/2000 28

Computing the information gain

Information gain: information before splitting —
information after splitting
gain("Outlook") = info([9,5]) - info([2,3],[4,0,[3,2]) = 0.940 - 0.693
=(.247 bits

Information gain for attributes from weather data:
gain("'Outlook") = 0.247 bits

gain("Temperatue") =0.029 bits
gain(" Humidity") = 0.152 bits
gain("Windy") = 0.048 bits

10/25/2000 29

Continuing to split

gain('Temperatue") =0.571bits
gain(" Humidity") = 0.971 bits
gain("Windy") = 0.020 bits

10/25/2000 30

The final decision tree

nn“}res no

i

= Note: not all leaves need to be pure; sometimes
identical instances have different classes

= Splitting stops when data can’t be split any further

10/25/2000 31

Wishlist for a purity measure

= Properties we require from a purity measure:
¢ When node is pure, measure should be zero

¢ When impurity is maximal (i.e. all classes equally
likely), measure should be maximal

¢ Measure should obey multistage property (i.e.
decisions can be made in several stages):

measure([23,4])=measure([27])+ (7/9)x measure([34])

= Entropy is the only function that satisfies all three
properties!

10/25/2000

32

Some properties of the entropy

The multistage property:

entropy(p,q,r) =entropy(p,q+r)+(g+r)Xentropy(4 , !)
qg+r qg+r

Simplification of computation:

info([2,3,4]) =—2/9%10g(2/9)—3/9%10g(3/9)—4/9x1og4/9)
=[-2log2-3log3—4log4+910g9]/9

Note: instead of maximizing info gain we could just
minimize information

10/25/2000 33

Highly-branching attributes

= Problematic: attributes with a large number of
values (extreme case: ID code)

= Subsets are more likely to be pure if there is a
large number of values

= Information gain is biased towards choosing
attributes with a large number of values

= This may result in overfitting (selection of an
attribute that is non-optimal for prediction)

= Another problem: fragmentation

10/25/2000 34

The weather data with ID code

10/25/2000

ID code Outlook Temp. Humidity Windy Play
A Sunny Hot High False No
B Sunny Hot High True No
C Overcast Hot High False Yes
D Rainy Mild High False Yes
E Rainy Cool Normal False Yes
F Rainy Cool Normal True No
G Overcast Cool Normal True Yes
H Sunny Mild High False No
I Sunny Cool Normal False Yes
J Rainy Mild Normal False Yes
K Sunny Mild Normal True Yes
L Overcast Mild High True Yes
M Overcast Hot Normal False Yes
N Rainy Mild High True No

35

Tree stump for ID code attribute

no no no

‘ yes

Entropy of split:
info("ID code") =1nfo([0,1) +1nfo([0,1) +...+1info([0,1) =0 bits

= Information gain is maximal for ID code (namely
0.940 bits)

10/25/2000 36

The gain ratio

= Gain ratio: a modification of the information gain
that reduces its bias

= Gain ratio takes number and size of branches into
account when choosing an attribute

¢ It corrects the information gain by taking the
intrinsic information of a split into account

= Intrinsic information: entropy of distribution of
instances into branches (i.e. how much info do we
need to tell which branch an instance belongs t0)

10/25/2000 37

Computing the gain ratio

Example: intrinsic information for ID code
info([1,1,...,1) =14x(-1/14xlog1/14) = 3.807 bits

Value of attribute decreases as intrinsic
iInformation gets larger

Definition of gain ratio:

: - - ain("Attribute’
gain_ratiq " Attribute") =- .g : (.)
intrinsic_info("Attribute")

Example: '
RIS sain_ratiq"ID_code’) = 2240t _ 6 546
3.807Dbits

10/25/2000 38

Gain ratios for weather data

Outlook Temperature

Info: 0.693 Info: 0.911
Gain: 0.940-0.693 0.247 Gain: 0.940-0.911 0.029
Split info: info([5,4,5]) 1.577 Split info: info([4,6,4]) 1.362
Gain ratio: 0.247/1.577 0.156 Gain ratio: 0.029/1.362 0.021
Humidity Windy

Info: 0.788 Info: 0.892
Gain: 0.940-0.788 0.152 Gain: 0.940-0.892 0.048
Split info: info([7,7]) 1.000 Split info: info([8,6]) 0.985
Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049

10/25/2000

39

More on the gain ratio

= “Outlook” still comes out top
= However: “ID code” has greater gain ratio

& Standard fix: ad hoc test to prevent splitting on that
type of attribute

= Problem with gain ratio: it may overcompensate

¢ May choose an attribute just because its intrinsic
information is very low

o Standard fix: only consider attributes with greater
than average information gain

10/25/2000 40

Discussion

= Algorithm for top-down induction of decision trees
(“ID3”) was developed by Ross Quinlan

o Gain ratio just one modification of this basic
algorithm

¢ Led to development of C4.5, which can deal with
numeric attributes, missing values, and noisy data

= Similar approach: CART

= [here are many other attribute selection criteria!
(But almost no difference in accuracy of result.)

10/25/2000 41

Covering algorithms

= Decision tree can be converted into a rule set
& Straightforward conversion: rule set overly complex
¢ More effective conversions are not trivial

= Strategy for generating a rule set directly: for each
class in turn find rule set that covers all instances
in it (excluding instances not in the class)

= [his approach is called a covering approach
because at each stage a rule is identified that
covers some of the instances

10/25/2000 42

Example: generating a rule

If true then class = a If x> 1.2 and y > 2. 6 then class = a

If x > 1. 2 then class = a

Possible rule set for class “b”:

If x £ 1.2 then class = Db
If x > 1.2 and y £ 2.6 then class = b

More rules could be added for “perfect” rule set

10/25/2000 43

Rules vs. trees

= Corresponding decision tree:
(produces exactly the same

yes

predictions) ‘ b H

a ‘

= But: rule sets can be more perspicuous when

decision trees suffer from replicated subt

rees

= Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas
decision tree learner takes all classes into account

10/25/2000

44

A simple covering algorithm

Generates a rule by adding tests that maximize
rule’s accuracy

Similar to situation in decision trees: problem of
selecting an attribute to split on

+ But: decision tree inducer maximizes overall purity

space of

Each new test reduces examples
rule’s coverage: o s

rule after
adding new
term

10/25/2000 45

Selecting a test

= Goal: maximizing accuracy
¢ [total number of instances covered by rule
& p: positive examples of the class covered by rule
¢ I-p: number of errors made by rule
= Select test that maximizes the ratio p/t

= We are finished when p/t = 1 or the set of
iInstances can’t be split any further

10/25/2000

46

Example: contact lenses data

= Rule we seek:
= Possible tests:

Age = Young

Age = Pre—-presbyopic

Age

Spectacle prescription

Spectacle prescription

Astigmatism

Astigmatism

Tear production rate

Tear production rate

10/25/2000

Presbyopic

no

yes

If ? then recommendation

= Myope
= Hypermetrope

Reduced

Normal

= hard

2/8
1/8
1/8
3/12
1/12
0/12
4/12
0/12
4/12

47

Modified rule and resulting data

= Rule with best test added:

If astigmatics = yes then recommendation = hard

= Instances covered by modified rule:

Age Spectacle Astigmatism Tear production Recommended

prescription rate lenses
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

10/25/2000

48

Further refinement

If astigmatism = yes and ? then

- Current State recommendation = hard

= Possible tests:
Age = Young 2/4
Age = Pre-presbyopic 1/4
Age = Presbyopic 1/4
Spectacle prescription = Myope 3/6
Spectacle prescription = Hypermetrope 1/6
Tear production rate = Reduced 0/6
Tear production rate = Normal 4/6

10/25/2000

Modified rule and resulting data

= Rule with best test added:

If astigmatics = yes and tear production rate = normal
then recommendation = hard
= Instances covered by modified rule:
Age Spectacle Astigmatism Tear production Recommended
prescription rate lenses
Young Myope Yes Normal Hard
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Normal None
10/25/2000

50

Further refinement

If astigmatism = yes and
u Current State tear production rate = normal and ?
. then recommendation = hard

= Possible tests:
Age = Young 2/2
Age = Pre-presbyopic 1/2
Age = Presbyopic 1/2
Spectacle prescription = Myope 3/3
Spectacle prescription = Hypermetrope 1/3

= Tie between the first and the fourth test
¢ We choose the one with greater coverage

10/25/2000

51

The result

. If astigmatism = yes and
H F|na| rUIe tear production rate = normal and
spectacle prescription = myope
then recommendation = hard

= Second rule for recommending “hard lenses’:
(built from instances not covered by first rule)

If age = young and astigmatism = yes and

tear production rate = normal then recommendation = hard

= These two rules cover all “hard lenses”:
o Process is repeated with other two classes

10/25/2000 52

Pseudo-code for PRISM

For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each wvalue v,
Consider adding the condition A = v to the left-hand side of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A = v to R

Remove the instances covered by R from E

10/25/2000 53

Rules vs. decision lists

= PRISM with outer loop removed generates a
decision list for one class

+ Subsequent rules are designed for rules that are
not covered by previous rules

o But: order doesn’t matter because all rules predict
the same class

= Outer loop considers all classes separately
+ No order dependence implied
= Problems: overlapping rules, default rule required

10/25/2000 54

Separate and conquer

= Methods like PRISM (for dealing with one class)
are separate-and-conquer algorithms:

o First, a rule is identified

o Then, all instances covered by the rule are
separated out

¢ Finally, the remaining instances are “conquered”
= Difference to divide-and-conquer methods:

+ Subset covered by rule doesn’t need to be explored
any further

10/25/2000 55

