Control

¢ Decision making instructions
— alter the control flow,
— i.e., change the "next" instruction to be executed

« MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

< Example: if (i==j)) h =i +j;

bne $s0, $s1, Label
add $s3, $s0, $s1
Label :

111998 Morgan Kaufmann Publishers 44

Control

¢ MIPS unconditional branch instructions:

j | abel
e Example:
if (it=)) beq $s4, $s5, Labl
h=i +j ; add $s3, $s4, $s5
el se j Lab2
h=i-j; Labl: sub $s3, $s4, $s5

Lab2:

¢ Can you build a simple for loop?

101998 Morgan Kaufmann Publishers 45

So far:

¢ Instruction Meaning
add $s1, $s2,$s3 $s1 = $s2 + $s3
sub $s1, $s2,$s3 $s1 = $s2 — $s3
lw $s1, 100($s2) $s1 = Menory[$s2+100]

sw $s1, 100($s2) Menory[$s2+100] = $s1

bne $s4, $s5, L Next instr. is at Label if $s4 ° $s5
beq $s4, $s5, L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

* Formats:

R| op | rs | rt | rd shant | funct |

I | op | rs | rt | 16 bit address |

J | op | 26 bit address |

111998 Morgan Kaufmann Publishers 46

Control Flow

« We have: beq, bne, what about Branch-if-less-than?

*« New instruction:
if $sl1 < $s2 then

$t0 =1
slt $t0, $s1, $s2 el se
$t0 =0

e Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

« Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

11998 Morgan Kaufmann Publishers 47

Constants

« Small constants are used quite frequently (50% of operands)
eg., A=A +5;
B=B+1;
C=C-15s;
e Solutions? Why not?
— put 'typical constants’ in memory and load them.
— create hard-wired registers (like $zero) for constants like one.

MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10

andi $29, $29, 6
ori $29, $29, 4

« How do we make this work?

(11998 Morgan Kaufmann Publishers @

How about larger constants?

e We'd like to be able to load a 32 bit constant into a register
e Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

filled with zeros
/ /

1010101010101010 | 0000000000000000 |

« Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

| 1010101010101010 | 0000000000000000 |

| 0000000000000000 | 1010101010101010 |

I_TOTOTOTMDTDTUTO—rTOTOTUTUIUIUIUIO—I

ori

101998 Morgan Kaufmann Publishers 50

Assembly Language vs. Machine Language

Assembly provides convenient symbolic representation
— much easier than writing down numbers
— e.g., destination first
e Machine language is the underlying reality
— e.g., destination is no longer first
¢ Assembly can provide 'pseudoinstructions’
- e.g., “move $t0, $t1” exists only in Assembly
— would be implemented using “add $t0,$t1,$zero”
e When considering performance you should count real instructions

111998 Morgan Kaufmann Publishers 51

Other Issues

e Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

¢ Some of these we'll talk about later

¢ We've focused on architectural issues

— basics of MIPS assembly language and machine code

— we’'ll build a processor to execute these instructions.

101998 Morgan Kaufmann Publishers 52

Overview of MIPS

« simpleinstructions all 32 bits wide
e very structured, no unnecessary baggage
* only three instruction formats

R | op | rs | rt | rd shant | funct |
| | op | rs | rt | 16 bit address |
J | op | 26 bit address |

* rely on compiler to achieve performance
— what are the compiler's goals?

* help compiler where we can

111998 Morgan Kaufmann Publishers 53

Addresses in Branches and Jumps

¢ Instructions:

bne $t4, $t 5, Label Next instruction isat Label if $t4 ° $t5
beq $t4, $t5, Label Next instruction isat Label if $t4 = $t5
j Label Next instruction isat L abel
* Formats:
| | op | rs rt 16 bit address |
J | op | 26 bit address |

¢ Addresses are not 32 bits
— How do we handle this with load and store instructions?

11998 Morgan Kaufmann Publishers 54

Addresses in Branches

Next instruction is at Label if $t4°$t5
Next instruction isat Label if $t4=%$t5

rs

| rt | 16 bit address |

Could specify a register (like lw and sw) and add it to address

— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

¢ Instructions:
bne $t 4, $t5, Label
beq $t4, $t5, Label
e Formats:
| oo]

— address boundaries of 256 MB

Jump instructions just use high order bits of PC

111998 Morgan Kaufmann Publishers 55

To summarize:

MIPS operands

Name Comments
$s0-$s7, $t0-$t9, $zero, |rastlocations for data. In MIPS, data must be in registers to perform
32 registers |$a0-$a3, $v0-$vl, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
2% memory |Memoryf4l, ..., sequential words differ by 4. Memory holds data structures, such s arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS assembly language
Category. Instruction Example Meaning [of
add add $s1, $s2, $s3 [$sI = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $s1, $s2, $s3 [$sI = $s2 - $s3 Three operands; data in registers
add ir addi $s1, $s2, 100 [$s1 = $s2 + 100 Used to add constants.
load word Iw_$s1, 100($s2) [$s1 = Memory[$52 + 100]|word from memory to register
store word sw_$sl, 100($s2) |Memory[$S2 +100] = $s1 |Word from register to memory
Data transfer [load byte Ib $s1, 100($s2) [$s1 = Memory[$S2 + 100]|Byte from memory to register
store byte sb_ $s1, 100($s2) |Memory[$52 +100] = $s1 |Byte from register to memory
load upper immediate | Ul $sI, 100 $s1 = 100 * 2° Loads constant in upper 16 bits
branch on equal beq $sI, $s2, 25 [if($sl == $s2)goto Equal test; PC-relative branch
PC +4+100
branch on not equal |[Pne $s1, $s2, 25 [if($s1 = $s2)goto Not equal test; PC-relative
Conditional PCr4r100
branch set on less than st $s1, $s2, $s3 [if$s2 < $s3) $s1=1; Compare less than; for beq, bne
else $51 =0
set less than siti $s1, $s2, 100 [if$s2 < 100) $s1=1; Compare less than constant
immediate else $51 =0
jump 2500 o to 10000 Jump to target address
Uncondi- jump register r_$ra goto $ra For switch, procedure return
tional jump __|jump and link al 2500 $ra = PC + 4; go to 10000 |For procedure call

101998 Morgan Kaufmann Publishers 56

1. Immediate addressing

| op | rs I rt | Immediate

2. Register addressing
| op | Is | Tt | rd | | mnm| Registers
T | Register

3. Base addressing
| op | Is | It | Address| | Memory

[Register | C B Haiword] Word

4. PC-relative addressing
[oo [s [] Address | Memory

[PC | E;)—» Word

5. Pseudodirect addressing
[on] Address. | Memory

[e | ?P_ Word

111998 Morgan Kaufmann Publishers 57

Alternative Architectures

« Design alternative:
— provide more powerful operations
— goal is to reduce number of instructions executed
— danger is a slower cycle time and/or a higher CPI
¢ Sometimes referred to as “RISC vs. CISC”
— virtually all new instruction sets since 1982 have been RISC

— VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

« We'll look at PowerPC and 80x86

11998 Morgan Kaufmann Publishers 58

PowerPC

¢ Indexed addressing
— example: Iw $t 1, $a0+$s3 #$t 1=Menor y[$a0+$s3]
— What do we have to do in MIPS?

e Update addressing
— update aregister as part of load (for marching through arrays)
— example: lwu $t0, 4($s3) #$t O=Menory[$s3+4] ; $s3=$s3+4
— What do we have to do in MIPS?
¢ Others:
— load multiple/store multiple
— aspecial counter register “bc Loop”
decrement counter, if not O goto loop

111998 Morgan Kaufmann Publishers 59

80x86

e 1978: The Intel 8086 is announced (16 bit architecture)

e 1980: The 8087 floating point coprocessor is added

e 1982: The 80286 increases address space to 24 bits, +instructions
e 1985: The 80386 extends to 32 bits, new addressing modes

e 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher performance)

¢ 1997: MMX is added

“Thishistory illustrates theimpact of the “ golden handcuffs’ of compatibility
“adding new featur es as someone might add clothing to a packed bag”

“an architecturethat isdifficult to explain and impossible to love”

101998 Morgan Kaufmann Publishers 60

A dominant architecture: 80x86

« See your textbook for a more detailed description

« Complexity:
— Instructions from 1 to 17 bytes long
— one operand must act as both a source and destination
— one operand can come from memory

— complex addressing modes
e.g., “base or scaled index with 8 or 32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

“what the 80x86 lacksin styleis made up in quantity,
making it beautiful from the right perspective’

111998 Morgan Kaufmann Publishers 61

