
44 1998 Morgan Kaufmann Publishers

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Control

45 1998 Morgan Kaufmann Publishers

• MIPS unconditional branch instructions:
j label

• Example:

if (i!=j) beq $s4, $s5, Lab1
 h=i+j; add $s3, $s4, $s5
else j Lab2
 h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

• Can you build a simple for loop?

Control

46 1998 Morgan Kaufmann Publishers

So far:

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 ° $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

• Formats:

 op rs rt rd shamt funct

 op rs rt 16 bit address

 op 26 bit address

R

I

J

47 1998 Morgan Kaufmann Publishers

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
 $t0 = 1

 slt $t0, $s1, $s2 else
 $t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

2

Control Flow

49 1998 Morgan Kaufmann Publishers

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put ’typical constants’ in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

 addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

3

Constants

50 1998 Morgan Kaufmann Publishers

• We’d like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

51 1998 Morgan Kaufmann Publishers

• Assembly provides convenient symbolic representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide ’pseudoinstructions’
– e.g., “move $t0, $t1” exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

• When considering performance you should count real instructions

Assembly Language vs. Machine Language

52 1998 Morgan Kaufmann Publishers

• Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

• Some of these we’ll talk about later
• We’ve focused on architectural issues

– basics of MIPS assembly language and machine code
– we’ll build a processor to execute these instructions.

Other Issues

53 1998 Morgan Kaufmann Publishers

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

• rely on compiler to achieve performance
— what are the compiler's goals?

• help compiler where we can

 op rs rt rd shamt funct

 op rs rt 16 bit address

 op 26 bit address

R

I

J

Overview of MIPS

54 1998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5

j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

 op rs rt 16 bit address

 op 26 bit address

I

J

Addresses in Branches and Jumps

55 1998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

 op rs rt 16 bit addressI

Addresses in Branches

56 1998 Morgan Kaufmann Publishers

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100

$s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra go to $ra For switch, procedure return

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

57 1998 Morgan Kaufmann Publishers

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

58 1998 Morgan Kaufmann Publishers

• Design alternative:

– provide more powerful operations

– goal is to reduce number of instructions executed

– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”

– virtually all new instruction sets since 1982 have been RISC

– VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

Alternative Architectures

59 1998 Morgan Kaufmann Publishers

PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]

– What do we have to do in MIPS?

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4

– What do we have to do in MIPS?
• Others:

– load multiple/store multiple
– a special counter register “bc Loop”

 decrement counter, if not 0 goto loop

60 1998 Morgan Kaufmann Publishers

80x86

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
• 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

61 1998 Morgan Kaufmann Publishers

A dominant architecture: 80x86

• See your textbook for a more detailed description
• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

