Control

¢ Decision making instructions
— alter the control flow,
— i.e., change the "next" instruction to be executed

« MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

< Example: if (i==j)) h =i +j;

bne $s0, $s1, Label
add $s3, $s0, $s1
Label :
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Control

¢ MIPS unconditional branch instructions:

j | abel
e Example:
if (it=)) beq $s4, $s5, Labl
h=i +j ; add $s3, $s4, $s5
el se j Lab2
h=i-j; Labl: sub $s3, $s4, $s5

Lab2:

¢ Can you build a simple for loop?
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So far:

¢ Instruction Meaning
add $s1, $s2,$s3  $s1 = $s2 + $s3
sub $s1, $s2,$s3  $s1 = $s2 — $s3
lw $s1, 100($s2) $s1 = Menory[ $s2+100]

sw $s1, 100($s2) Menory[ $s2+100] = $s1

bne $s4, $s5, L Next instr. is at Label if $s4 ° $s5
beq $s4, $s5, L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

* Formats:

R| op | rs | rt | rd shant | funct |

I | op | rs | rt | 16 bit address |

J | op | 26 bit address |
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Control Flow

« We have: beq, bne, what about Branch-if-less-than?

*« New instruction:
if $sl1 < $s2 then

$t0 =1
slt $t0, $s1, $s2 el se
$t0 =0

e Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

« Note that the assembler needs a register to do this,
— there are policy of use conventions for registers
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Constants

« Small constants are used quite frequently (50% of operands)
eg., A=A +5;
B=B+1;
C=C-15s;
e Solutions? Why not?
— put 'typical constants’ in memory and load them.
— create hard-wired registers (like $zero) for constants like one.

MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10

andi $29, $29, 6
ori $29, $29, 4

« How do we make this work?
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How about larger constants?

e We'd like to be able to load a 32 bit constant into a register
e Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

filled with zeros
/ /

1010101010101010 | 0000000000000000 |

« Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

| 1010101010101010 | 0000000000000000 |

| 0000000000000000 | 1010101010101010 |

I_TOTOTOTMDTDTUTO—rTOTOTUTUIUIUIUIO—I

ori
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Assembly Language vs. Machine Language

Assembly provides convenient symbolic representation
— much easier than writing down numbers
— e.g., destination first
e Machine language is the underlying reality
— e.g., destination is no longer first
¢ Assembly can provide 'pseudoinstructions’
- e.g., “move $t0, $t1” exists only in Assembly
— would be implemented using “add $t0,$t1,$zero”
e When considering performance you should count real instructions
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Other Issues

e Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

¢ Some of these we'll talk about later

¢ We've focused on architectural issues

— basics of MIPS assembly language and machine code

— we’'ll build a processor to execute these instructions.
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Overview of MIPS

« simpleinstructions all 32 bits wide
e very structured, no unnecessary baggage
* only three instruction formats

R | op | rs | rt | rd shant | funct |
| | op | rs | rt | 16 bit address |
J | op | 26 bit address |

* rely on compiler to achieve performance
— what are the compiler's goals?

* help compiler where we can
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Addresses in Branches and Jumps

¢ Instructions:

bne $t4, $t 5, Label Next instruction isat Label if $t4 ° $t5
beq $t4, $t5, Label Next instruction isat Label if $t4 = $t5
j Label Next instruction isat L abel
* Formats:
| | op | rs rt 16 bit address |
J | op | 26 bit address |

¢ Addresses are not 32 bits
— How do we handle this with load and store instructions?
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Addresses in Branches

Next instruction is at Label if $t4°$t5
Next instruction isat Label if $t4=%$t5

rs

| rt | 16 bit address |

Could specify a register (like lw and sw) and add it to address

— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

¢ Instructions:
bne $t 4, $t5, Label
beq $t4, $t5, Label
e  Formats:
| oo ]

— address boundaries of 256 MB

Jump instructions just use high order bits of PC
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To summarize:

MIPS operands

Name Comments
$s0-$s7, $t0-$t9, $zero, |rastlocations for data. In MIPS, data must be in registers to perform
32 registers |$a0-$a3, $v0-$vl, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
2% memory |Memoryf4l, ..., sequential words differ by 4. Memory holds data structures, such s arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS assembly language
Category. Instruction Example Meaning [of
add add $s1, $s2, $s3  [$sI = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $s1, $s2, $s3 [$sI = $s2 - $s3 Three operands; data in registers
add ir addi $s1, $s2, 100 [$s1 = $s2 + 100 Used to add constants.
load word Iw_$s1, 100($s2) [$s1 = Memory[$52 + 100]|word from memory to register
store word sw_$sl, 100($s2)  |Memory[$S2 +100] = $s1 |Word from register to memory
Data transfer [load byte Ib $s1, 100($s2) [$s1 = Memory[$S2 + 100]|Byte from memory to register
store byte sb_ $s1, 100($s2) |Memory[$52 +100] = $s1 |Byte from register to memory
load upper immediate | Ul $sI, 100 $s1 = 100 * 2° Loads constant in upper 16 bits
branch on equal beq $sI, $s2, 25 [if($sl == $s2)goto Equal test; PC-relative branch
PC +4+100
branch on not equal |[Pne  $s1, $s2, 25 [if($s1 = $s2)goto Not equal test; PC-relative
Conditional PCr4r100
branch set on less than st $s1, $s2, $s3 [if$s2 < $s3) $s1=1; Compare less than; for beq, bne
else $51 =0
set less than siti $s1, $s2, 100 [if$s2 < 100) $s1=1; Compare less than constant
immediate else $51 =0
jump 2500 o to 10000 Jump to target address
Uncondi- jump register r_$ra goto $ra For switch, procedure return
tional jump __|jump and link al 2500 $ra = PC + 4; go to 10000 |For procedure call
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1. Immediate addressing

| op | rs I rt | Immediate

2. Register addressing
| op | Is | Tt | rd | | mnm| Registers
T | Register

3. Base addressing
| op | Is | It | Address| | Memory

[ Register | C B Haiword] Word

4. PC-relative addressing
[oo [ s [ ] Address | Memory

[ PC | E;)—» Word

5. Pseudodirect addressing
[on ] Address. | Memory

[ e | ?P_ Word
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Alternative Architectures

« Design alternative:
— provide more powerful operations
— goal is to reduce number of instructions executed
— danger is a slower cycle time and/or a higher CPI
¢ Sometimes referred to as “RISC vs. CISC”
— virtually all new instruction sets since 1982 have been RISC

— VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

« We'll look at PowerPC and 80x86
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PowerPC

¢ Indexed addressing
— example: Iw $t 1, $a0+$s3 #$t 1=Menor y[ $a0+$s3]
— What do we have to do in MIPS?

e Update addressing
— update aregister as part of load (for marching through arrays)
— example: lwu $t0, 4($s3) #$t O=Menory[ $s3+4] ; $s3=$s3+4
— What do we have to do in MIPS?
¢ Others:
— load multiple/store multiple
— aspecial counter register “bc Loop”
decrement counter, if not O goto loop
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80x86

e 1978: The Intel 8086 is announced (16 bit architecture)

e 1980: The 8087 floating point coprocessor is added

e 1982: The 80286 increases address space to 24 bits, +instructions
e 1985: The 80386 extends to 32 bits, new addressing modes

e 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher performance)

¢ 1997: MMX is added

“Thishistory illustrates theimpact of the “ golden handcuffs’ of compatibility
“adding new featur es as someone might add clothing to a packed bag”

“an architecturethat isdifficult to explain and impossible to love”
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A dominant architecture: 80x86

« See your textbook for a more detailed description

« Complexity:
— Instructions from 1 to 17 bytes long
— one operand must act as both a source and destination
— one operand can come from memory

— complex addressing modes
e.g., “base or scaled index with 8 or 32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

“what the 80x86 lacksin styleis made up in quantity,
making it beautiful from the right perspective’
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