Computer Networks

Link Layer Services
Error Detection and Correction

Link Layer: Introduction

Some terminology:
• hosts and routers are nodes
• communication channels that connect adjacent nodes along communication path are links
 – wired links
 – wireless links
 – LANs
• layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link
Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt (reliable data transfer) over link

transportation analogy
- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

Link Layer Services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - “MAC” addresses used in frame headers to identify source, dest
 - different from IP address!
- reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?
Link Layer Services (more)

• flow control:
 − pacing between adjacent sending and receiving nodes

• error detection:
 − errors caused by signal attenuation, noise.
 − receiver detects presence of errors:
 • signals sender for retransmission or drops frame

• error correction:
 − receiver identifies and corrects bit error(s) without resorting to retransmission

• half-duplex and full-duplex
 − with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

• in each and every host
• link layer implemented in “adaptor” (aka network interface card NIC)
 − Ethernet card, PCMCI card, 802.11 card
 − implements link, physical layer
• attaches into host’s system buses
• combination of hardware, software, firmware
Adaptors Communicating

- **sending side:**
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.

- **receiving side**
 - looks for errors, rdt, flow control, etc.
 - extracts datagram, passes to upper layer at receiving side

Error Detection

EDC = Error Detection and Correction bits (redundancy)
D = Data protected by error checking, may include header fields

- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction
Parity Checking

Single Bit Parity:
Detect single bit errors

- d data bits
- parity bit

```
0111000110101011 0
```

Two Dimensional Bit Parity:
Detect and correct single bit errors

- row parity
- column parity

```
\[
\begin{array}{cccccc}
  d_{1,1} & \cdots & d_{1,j} & d_{1,j+1} \\
  d_{2,1} & \cdots & d_{2,j} & d_{2,j+1} \\
  \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
  d_{i,1} & \cdots & d_{i,j} & d_{i,j+1} \\
  d_{i+1,1} & \cdots & d_{i+1,j} & d_{i+1,j+1} \\
  \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
  101011 & 101011 & 101011 & 101011 & \text{parity error} \\
  111100 & 111100 & 111100 & 111100 & \text{parity error} \\
  011101 & 011101 & 011101 & 011101 & \text{parity error} \\
  001010 & 001010 & 001010 & 001010 & \text{error} \\
\end{array}
\]
```

Internet checksum (review)

Goal: detect “errors” (e.g., flipped bits) in transmitted packet
(note: used at transport layer only)

Sender:
- treat segment contents as sequence of 16-bit integers
- checksum: addition (1’s complement sum) of segment contents
- sender puts checksum value into UDP checksum field

Receiver:
- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO - error detected
 - YES - no error detected. But maybe errors nonetheless?
Checksumming: Cyclic Redundancy Check

- view data bits, \(D \), as a binary number
- choose \(r+1 \) bit pattern (generator), \(G \)
- goal: choose \(r \) CRC bits, \(R \), such that
 - \(<D,R> \) exactly divisible by \(G \) (modulo 2)
 - receiver knows \(G \), divides \(<D,R> \) by \(G \). If non-zero remainder: error detected!
 - can detect all burst errors less than \(r+1 \) bits
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

Link Layer CRC Example

Want:
\[
D \cdot 2^r \text{ XOR } R = nG
\]

equivalently:
\[
D \cdot 2^r = nG \text{ XOR } R
\]

equivalently:
if we divide \(D \cdot 2^r \) by \(G \),
want remainder \(R \)

\[
R = \text{remainder}[\frac{D \cdot 2^r}{G}]
\]