Mining association rules

■ Naïve method for finding association rules:
 ◆ Using the standard separate-and-conquer method, treating every possible combination of attribute values as a separate class

■ Two problems:
 ◆ Computational complexity
 ◆ Resulting number of rules (which would have to be pruned on the basis of support and confidence)

■ But: we can look for high support rules directly!
Item sets

- Support: number of instances correctly covered by association rule
 - The same as the number of instances covered by all tests in the rule (LHS and RHS!)
- Item: one test/attribute-value pair
- Item set: all items occurring in a rule
- Goal: only rules that exceed pre-defined support
 ⇒ We can do it by finding all item sets with the given minimum support and generating rules from them!
Item sets for weather data

<table>
<thead>
<tr>
<th>One-item sets</th>
<th>Two-item sets</th>
<th>Three-item sets</th>
<th>Four-item sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook = Sunny (5)</td>
<td>Outlook = Sunny</td>
<td>Outlook = Sunny</td>
<td>Outlook = Sunny</td>
</tr>
<tr>
<td></td>
<td>Temperature = Mild (2)</td>
<td>Temperature = Hot</td>
<td>Temperature = Hot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity = High (2)</td>
<td>Humidity = High</td>
</tr>
<tr>
<td>Temperature = Cool (4)</td>
<td>Outlook = Sunny</td>
<td>Outlook = Sunny</td>
<td>Outlook = Rainy</td>
</tr>
<tr>
<td></td>
<td>Humidity = High (3)</td>
<td></td>
<td>Temperature = Mild</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windy = False (2)</td>
<td>Windy = False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Play = False</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Play = Yes (2)</td>
</tr>
</tbody>
</table>

- In total: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets (with minimum support of two)
Generating rules from an item set

- Once all item sets with minimum support have been generated, we can turn them into rules.
- **Example:** Humidity = Normal, Windy = False, Play = Yes (4)
- **Seven (2^N-1) potential rules:**

 - If Humidity = Normal and Windy = False then Play = Yes
 - If Humidity = Normal and Play = Yes then Windy = False
 - If Windy = False and Play = Yes then Humidity = Normal
 - If Humidity = Normal then Windy = False and Play = Yes
 - If Windy = False then Humidity = Normal and Play = Yes
 - If Play = Yes then Humidity = Normal and Windy = False
 - If True then Humidity = Normal and Windy = False and Play = Yes
Rules for the weather data

- Rules with support > 1 and confidence = 100%:

<table>
<thead>
<tr>
<th>Association rule</th>
<th>Sup.</th>
<th>Conf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Humidity=Normal Windy=False ⇒Play=Yes</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>2 Temperature=Cool</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>3 Outlook=Overcast</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>4 Temperature=Cold Play=Yes</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>58 Outlook=Sunny Temperature=Hot</td>
<td>2</td>
<td>100%</td>
</tr>
</tbody>
</table>

- In total: 3 rules with support four, 5 with support three, and 50 with support two
Example rules from the same set

- Item set:

 Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

- Resulting rules (all with 100% confidence):

 Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
 Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
 Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal

 due to the following “frequent” item sets:

 Temperature = Cool, Windy = False (2)
 Temperature = Cool, Humidity = Normal, Windy = False (2)
 Temperature = Cool, Windy = False, Play = Yes (2)
Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, …
 - If \((A B)\) is frequent item set, then \((A)\) and \((B)\) have to be frequent item sets as well!
 - In general: if \(X\) is frequent \(k\)-item set, then all \((k-1)\)-item subsets of \(X\) are also frequent
 \(\Rightarrow\) Compute \(k\)-item set by merging \((k-1)\)-item sets
An example

- Given: five three-item sets
 \((A \ B \ C), (A \ B \ D), (A \ C \ D), (A \ C \ E), (B \ C \ D) \)
- Lexicographically ordered!
- Candidate four-item sets:
 \((A \ B \ C \ D) \) OK because of \((B \ C \ D) \)
 \((A \ C \ D \ E) \) Not OK because of \((C \ D \ E) \)
- Final check by counting instances in dataset!
- \((k-1)\)-item sets are stored in hash table
Generating rules efficiently

- We are looking for all high-confidence rules
 - Support of antecedent obtained from hash table
 - But: brute-force method is \((2^N-1)\)
- Better way: building \((c + 1)\)-consequent rules from \(c\)-consequent ones
 - Observation: \((c + 1)\)-consequent rule can only hold if all corresponding \(c\)-consequent rules also hold
- Resulting algorithm similar to procedure for large item sets
Example

■ 1-consequent rules:

 If Outlook = Sunny and Windy = False and Play = No
 then Humidity = High (2/2)

 If Humidity = High and Windy = False and Play = No
 then Outlook = Sunny (2/2)

■ Corresponding 2-consequent rule:

 If Windy = False and Play = No
 then Outlook = Sunny and Humidity = High (2/2)

■ Final check of antecedent against hash table!
Discussion of association rules

- Above method makes one pass through the data for each different size item set
 - Other possibility: generate $(k+2)$-item sets just after $(k+1)$-item sets have been generated
 - Result: more $(k+2)$-item sets than necessary will be considered but less passes through the data
 - Makes sense if data too large for main memory
- Practical issue: generating a certain number of rules (e.g. by incrementally reducing min. support)
Other issues

- ARFF format very inefficient for typical *market basket data*
 - Attributes represent items in a basket and most items are usually missing
- Instances are also called *transactions*
- Confidence is not necessarily the best measure
 - Example: milk occurs in almost every supermarket transaction
 - Other measures have been devised (e.g. lift)