Arithmetic

- Where we’ve been:
 - Performance (seconds, cycles, instructions)
 - Abstractions:
 Instruction Set Architecture
 Assembly Language and Machine Language
- What’s up ahead:
 - Implementing the Architecture

Numbers

- Bits are just bits (no inherent meaning)
 — conventions define relationship between bits and numbers
- Binary numbers (base 2)
 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
 decimal: 0...2^n-1
- Of course it gets more complicated:
 numbers are finite (overflow)
 fractions and real numbers
 negative numbers
 e.g., no MIPS subi instruction; addi can add a negative number
- How do we represent negative numbers?
 i.e., which bit patterns will represent which numbers?
Possible Representations

<table>
<thead>
<tr>
<th></th>
<th>Sign Magnitude:</th>
<th>One's Complement</th>
<th>Two's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
<td></td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
<td></td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
<td></td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
<td></td>
</tr>
<tr>
<td>100 = -0</td>
<td>100 = -3</td>
<td>100 = -4</td>
<td></td>
</tr>
<tr>
<td>101 = -1</td>
<td>101 = -2</td>
<td>101 = -3</td>
<td></td>
</tr>
<tr>
<td>110 = -2</td>
<td>110 = -1</td>
<td>110 = -2</td>
<td></td>
</tr>
<tr>
<td>111 = -3</td>
<td>111 = -0</td>
<td>111 = -1</td>
<td></td>
</tr>
</tbody>
</table>

- **Issues:** balance, number of zeros, ease of operations
- **Which one is best? Why?**

MIPS

- **32 bit signed numbers:**

\[
\begin{align*}
0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000_{\text{ten}} = 0_{\text{ten}} \\
0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0001_{\text{ten}} = +1_{\text{ten}} \\
0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0010_{\text{ten}} = +2_{\text{ten}} \\
\vdots
0111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1110_{\text{ten}} = +2,147,483,646_{\text{ten}} \\
0111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111_{\text{ten}} = +2,147,483,647_{\text{ten}} \\
1000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000_{\text{ten}} = -2,147,483,648_{\text{ten}} \\
1000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0001_{\text{ten}} = -2,147,483,647_{\text{ten}} \\
1000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0010_{\text{ten}} = -2,147,483,646_{\text{ten}} \\
\vdots
1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111_{\text{ten}} = -3_{\text{ten}} \\
1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1110_{\text{ten}} = -4_{\text{ten}} \\
1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111_{\text{ten}} = -4_{\text{ten}} \\
\end{align*}
\]
Two’s Complement Operations

- Negating a two’s complement number: invert all bits and add 1
 - remember: “negate” and “invert” are quite different!
- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits
 \[
 \begin{array}{c}
 0010 \rightarrow 0000 0010 \\
 1010 \rightarrow 1111 1010 \\
 \end{array}
 \]
 - "sign extension" (lbu vs. lb)

Addition & Subtraction

- Just like in grade school (carry/borrow 1s)
 \[
 \begin{array}{c}
 \begin{array}{c}
 0111 \\
 + 0110 \\
 \hline
 1001
 \end{array}
 \end{array}
 \begin{array}{c}
 \begin{array}{c}
 0111 \\
 - 0110 \\
 \hline
 0101
 \end{array}
 \end{array}
 \begin{array}{c}
 \begin{array}{c}
 0111 \\
 + 1010 \\
 \hline
 1101
 \end{array}
 \end{array}
 \]
- Two’s complement operations easy
 - subtraction using addition of negative numbers
 \[
 \begin{array}{c}
 \begin{array}{c}
 0111 \\
 + 1010 \\
 \hline
 1001
 \end{array}
 \end{array}
 \]
- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number
 \[
 \begin{array}{c}
 \begin{array}{c}
 0111 \\
 + 0001 \\
 \hline
 1000
 \end{array}
 \end{array}
 \]
 note that overflow term is somewhat misleading,
 it does not mean a carry “overflowed”
Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A – B
 - Can overflow occur if B is 0?
 - Can overflow occur if A is 0?

Effects of Overflow

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don’t always want to detect overflow
 — new MIPS instructions: addu, addiu, subu

 note: addiu still sign-extends!
 note: sltu, sltiu for unsigned comparisons
Review: Boolean Algebra & Gates

- Problem: Consider a logic function with three inputs: A, B, and C.

 Output D is true if at least one input is true
 Output E is true if exactly two inputs are true
 Output F is true only if all three inputs are true

- Show the truth table for these three functions.

- Show the Boolean equations for these three functions.

- Show an implementation consisting of inverters, AND, and OR gates.

An ALU (arithmetic logic unit)

- Let’s build an ALU to support the andi and ori instructions
 - we’ll just build a 1 bit ALU, and use 32 of them

- Possible Implementation (sum-of-products):
Review: The Multiplexor

- Selects one of the inputs to be the output, based on a control input

\[S \]
A \[0 \]
B \[1 \]
C

note: we call this a 2-input mux even though it has 3 inputs!

- Lets build our ALU using a MUX:

Different Implementations

- Not easy to decide the “best” way to build something
 - Don’t want too many inputs to a single gate
 - Don’t want to have to go through too many gates
 - For our purposes, ease of comprehension is important

- Let’s look at a 1-bit ALU for addition:

\[
c_{\text{out}} = a \cdot b + a \cdot c_{\text{in}} + b \cdot c_{\text{in}} \\
\text{sum} = a \odot b \odot c_{\text{in}}
\]

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?
Building a 32 bit ALU

What about subtraction \((a - b)\) ?

- Two’s complement approach: just negate \(b\) and add.
- How do we negate?

- A very clever solution: