[Von Neumann] Computers

- CPU
- memory (disk drives, DRAM, SRAM, CD)
- input (mouse, keyboard)
- output (display, printer)
- network
- software

We need abstraction ...
Levels of abstraction

Software:
 Application
 Operating system
 Firmware

Instruction set architecture:
 Data type and structures: encodings and machine representation
 Instruction set
 Instruction formats
 Addressing modes and accessing data and instructions

Hardware:
 Instruction set processing
 I/O System
 Digital design
 Circuit design
 Layout
What is “Computer Architecture”

Computer Architecture =

Instruction Set Architecture +

Machine Organization
Instruction Set Architecture

• Organization of Programmable Storage
• Data type and Structures: encodings and machine representation
• Instruction set
• Instruction Formats
• Addressing Modes and Accessing Data and Instructions
• Exception Handling

Computer Organization

• Capabilities and Performance of the Basic Functional Units
• The Way These Units are Interconnected
• Information Flow between components
• Information Flow Control
What is “Computer Architecture”?

- Application
- Operating System
 - Compiler
 - Firmware
- I/O system
- Datapath & Control
- Digital Design
- Circuit Design
- Layout

Instruction Set Architecture
MIPS machine
Example: adding two variables

Software level

C:
 • $A = B + C$

Assembler
 • $B \rightarrow $s1, $C \rightarrow $s2
 • add $t0, $s1, $s2
 • $t0 \rightarrow A$

Machine instruction:

<table>
<thead>
<tr>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>…</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>18</td>
<td>8</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>000000</td>
<td>10001</td>
<td>10010</td>
<td>01000</td>
<td>00000</td>
<td>100000</td>
</tr>
</tbody>
</table>
Example: Datapath and control
Example: from instructions to gates

Register file and ALU

Instruction

Read register 1
Read register 2
Write register
Write data

Read data 1
Read data 2

ALU operation

Zero

RegWrite

ALU result

ALU
Example: from instructions to gates

Inside register file
Example: from instructions to gates

Arithmetic Logic Unit (ALU)
Example: from instructions to gates

ALU: Carry Out logic

\[
\text{CarryOut} = b \cdot \text{CarryIn} + a \cdot \text{CarryIn} + a \cdot b + a \cdot b \cdot \text{CarryIn}
\]

or

\[
\text{CarryOut} = b \cdot \text{CarryIn} + a \cdot \text{CarryIn} + a \cdot b
\]
Example: from instructions to gates

Logic gates

1. **AND gate (c = a . b)**
 - ![AND gate diagram]
 - Table:
a	b	c = a . b
0	0	0
0	1	0
1	0	0
1	1	1

2. **OR gate (c = a + b)**
 - ![OR gate diagram]
 - Table:
a	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

3. **Inverter (c = a)**
 - ![Inverter diagram]
 - Table:
a	c = a
0	1
1	0

4. **Multiplexor**
 - ![Multiplexor diagram]
 - Table:
d	c
0	a
1	b