
Mobile Computing and Robotics in One Course: Why Not?
Stan Kurkovsky
Computer Science

Central Connecticut State University
1615 Stanley Street, New Britain, CT 06050, USA

kurkovsky@ccsu.edu

ABSTRACT
Robotic technology offers an excellent platform providing a
hands-on learning environment for reinforcing theoretical topics
in computer science, computer and electrical engineering, and
mathematics. Robotics has been successfully used to promote
student interest in computing and other STEM disciplines.
However, students whose interest in computing may have been
sparked or sustained by robots may be seeking more experience
with robotics in the rest of the computing curriculum. This paper
describes an effort to introduce robotics-related material into an
existing upper-level course in mobile computing and discusses the
rationale for such a pairing.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education, Curriculum.

General Terms
Design, Experimentation, Human Factors.

Keywords
Android, mobile computing, mobile application development,
Sphero, robotics.

1. INTRODUCTION
Using robots in the curriculum provides a convenient avenue to
demonstrate and practice a synergistic application of concepts
from computer science, engineering, physics, and mathematics.
Robotics has an inherent appeal on both emotional and intellectual
level that makes it attractive to a broad range of learners across
multiple dimensions, such as age, gender, academic interest, or
the chosen program of study. Robotics has become an
increasingly popular topic to promote computing and use it as an
engaging and motivational tool in introductory courses offered in
middle and high schools, summer camps, as well as in CS 0 and
CS I college-level courses [1,12]. This is very closely related to
the increased availability of relatively cheap robotic platforms and
kits, as well as inherent attractiveness of robotics and related
technologies to the younger generation.

Hopefully, the effort to increase the appeal of computing by using
robots in introductory courses will result in a noticeable influx of
students and improved retention. However, since their interest in

computing may have been sparked or sustained by robots, these
students may be seeking more experience with robotics in the rest
of the computing curriculum. As it stands right now, there are not
too many undergraduate Computer Science programs that offer
courses in robotics or include robotics-related material beyond CS
0 or CS I [20]. This paper describes the author’s attempt to fill this
void by exploring the possibility to combine robotics and mobile
computing in a single course.

2. ROBOTS IN CS CURRICULUM
The vast majority of literature on robotics in the computing
curriculum focuses on using robots as a motivational tool for
contextualized teaching and as an outreach tool to introduce K-12
and non-CS college students to computing [13]. McGill published
an excellent survey of published curricular initiatives that use
robotics to boost student motivation in introductory computing
courses [14]; other surveys review available robotics education
platforms for K-12 [3], undergraduate [19], and graduate
programs [7]. Curricular activities involving educational robots
typically address a variety of aspects in student learning ranging
from communication skills to creativity and problem solving.

Outside of using robots as a motivational and engaging factor in
introductory courses, there are very few undergraduate computer
science programs offering courses in robotics. This can be partly
explained by the fact that robotics has always been perceived as a
more ‘hardware-oriented’ topic, which in the past may have
driven CS students away from it. Equipment costs and lack of
faculty expertise are also among the factors contributing to the
students’ lack of exposure to this important field. As an inherently
interdisciplinary area, robotics brings together a broad range of
computing sub-disciplines (such as computer architecture,
artificial intelligence, software engineering, embedded systems,
etc.), as well as mechanical and electrical engineering, physics,
and mathematics. Therefore, introducing students to robotics can
help them establish a better understanding of the relationship
between computing and other science and engineering disciplines,
and also provide students with an experience in designing and
building complex systems that combine hardware and software.

But what happens to those students who make the choice to study
computing and may be looking to learn about robotics beyond
what they may have experienced in a course where robots were
used to engage and motivate? Will they get any further exposure
to robotics? Kay poses an interesting question whether this is a
case of bait and switch when we use a contextualized approach
(such as robotics or media computation) in an introductory course,
but then leave students with nothing but dry theory and contrived
examples in the courses that follow [11]. Although generally this
question remains unanswered, a solution can be found by
incorporating relevant contextual topics into the curriculum.
When it comes to incorporating a particular emerging technology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ITiCSE’13, July 1–3, 2013, Canterbury, England, UK.
Copyright 2013 ACM 978-1-4503-2078-8/13/07 ...$15.00.

64

or a topic into the curriculum, institutions typically have three
options: introduce a new course focusing on that topic, use an
existing course, or incorporate the material as a unit(s) within
other existing course(s) [4]. Offering a separate course may
provide the benefits of a more focused and in-depth study of the
topic at hand, but it is not always easy due to logistics and
bureaucracy. Incorporating relevant topics into an existing course
may often be the simplest way to address this problem.

3. ROBOTICS AND MOBILE COMPUTING
If robotics-related material were to become a substantial part of
another course, which computing topic would offer a good
pairing? Good candidates may include computer architecture [10],
artificial intelligence [9], computer vision [8], embedded systems
[15], etc. The objective of this paper, however, is not to offer a
comparative analysis of possible choices and argue for the best
combination. Instead, based on the author’s extensive experience
with mobile computing, this paper explores a combination of
robotics with mobile application development for Android.

There are very few reports in the literature that describe any
experience of combining the use of robotics and mobile
computing throughout an entire course, or even in a single hands-
on activity. Uludag et al [21] describe a simple lab activity that
uses App Inventor [23] to create an application that connects to a
Lego Mindstorms robotic device and has the capability of starting
and stopping its motor. A number of reports indicate that Android
is a suitable platform for teaching embedded systems at both
undergraduate [15] and graduate level [22].

Using programmable devices, such as robots or smartphones, has
been shown to stimulate student creativity and problem-solving
skills [2]. Hands-on experimentation with tangible real-world
objects supports the principles of constructionist teaching and
learning, which helps students organize and transfer theoretical
knowledge to practice through experience. Programmable devices
are not only fun to work with; they provide an excellent platform
for a holistic combination of practice and theory [8].

Robots and mobile devices such as smartphones exemplify
extreme integration: both combine a powerful processor,
communication capabilities, and a diverse range of sensors.
Despite the obvious differences in the design emphasis
(electromechanical capabilities in robotics and computational and
communication richness in mobile devices), these two kinds of
devices have a lot in common. Extreme integration allows robotic
devices and smartphones leverage their ability to sense and
interact with the real-world objects. Using robotics technology
and other hands-on educational contexts promotes developing
better critical thinking and problem solving skills, which are
essential for student success in the STEM fields. Indeed, mobile
devices have been used throughout the CS curriculum: as a
learning context, as a tool to improve student engagement and
motivation, and as a focus of study in mobile computing and
mobile application development courses [5]. Both mobile
computing and robotics are crosscutting areas of CS in that they
require students to have a working knowledge of computer
architecture, operating systems, and computer networking, while
reinforcing the notion that neither of these areas exists in isolation
from the others.

4. THE CHOICE OF PLATFORMS
Having made the decision to combine robotics with mobile
application development, it is important to make a good choice of
hardware platforms that are well suited for the educational

environment while providing enough flexibility to illustrate the
richness of each discipline, as well as their close relationship with
each other.

4.1 Android
The choice of Android as a mobile application development
platform is easy to justify:

Low learning curve. The vast majority of students already know
Java, Android’s primary development language.

Flexibility of development platform. Application development
environment (e.g. Eclipse) is supported by multiple operating
systems.

Low to non-existent costs. Unless students plan to distribute their
mobile apps via Google Play store that requires a one-time $25
registration fee, there are no costs associated with Android
application development.

Availability of devices. Android is the most popular mobile
platform, and students do not need a top of the line or the most up
to date device for development purposes.

4.2 Sphero
Sphero is a small robotic ball manufactured by Orbotix
(www.gosphero.com) that is equipped with internal motors
allowing it to roll on a flat surface in any direction. It is equipped
with a number of sensors and has an open low-level API to
communicate with other devices via Bluetooth. With high-level
SDKs for iOS and Android platforms, Sphero can be controlled
by an external application running on a mobile device, or by
macros and orbBasic code executed by the robot itself. The
following factors influenced the choice of Sphero as a suitable
robotic platform:

It is a robot. Despite its limited functionality, first and foremost,
Sphero is a robot. Section 4.3 gives a grounded justification why
Sphero is a suitable platform to expose students to the most
important elements of robotics.

Emphasis on communication. As a platform, Sphero makes a
strong emphasis on communication between the robot and iOS or
Android devices, which not only makes it especially suitable for
pairing with the Android material, but also offers a rich context to
explore many important issues of complex hardware/software
systems, which are not always covered well in the curriculum.
Open SDKs. Orbotix provides iOS and Android SDKs along with
a set of well-documented sample applications.
Variety of uses. In addition to its most obvious application as a
robot, Sphero can also be used in a number of other ways, which
include a 3D controller and a moving fiducial for augmented
reality applications, which are supported by the open SDK.

4.3 Can Sphero Be Used to Teach Robotics?
Touretzky describes “seven big ideas” for teaching robotics [20],
which collectively could shape the students’ understanding of the
fundamental ideas in the field of robotics. Each of the seven ideas
poses a question, which uses the robotics context to expose
students to a deeper and often rather complex computing concept,
but at the same time offers a tangible answer that is easy to
demonstrate and understand. Although Sphero cannot be
considered a truly autonomous robot, we believe that it can be
used to expose students to each of the seven big ideas, which are
discussed below.

65

4.3.1 How Do Robots Know What to Do?
Specially designed algorithms and a clearly articulated set of
constraints and goals control the behavior of a truly autonomous
robot. A simple robot such as Sphero may have a simplified way
of ‘knowing’ how to seek its goals. Sphero’s behavior can be
programmed by macros or orbBasic code executed on the device,
which can make decisions based on its sensor readouts. Sphero
can also be controlled by and communicate with an application
running on an iOS or Android device.

4.3.2 How Do Robots See the World?
Robots equipped with light sensors or cameras can implement
computer vision algorithms to identify real-world objects
surrounding them. Sphero’s sensors include an accelerometer, a
magnetometer, and a gyroscope. In the absence of a camera or a
light sensor, Sphero’s ability to ‘see’ the world is limited to
detecting collisions with other objects, which can be registered by
changes in the accelerometer readouts. Applying Fourier
transform can help correctly detect a spike in the accelerometer
data stream indicating a collision with an obstacle. The shape and
magnitude of the spike may help determine the angle of collision;
comparing collision data from multiple Spheros can also help
detecting a robot-to-robot collision.

4.3.3 How Do Robots Know Where They Are?
Generally, robots use odometry (estimation of the direction and
the distance traveled) or landmark identification (which can
include identification of natural artifacts using computer vision, or
using fiducials, such as visual tags or RFID tags). Sphero relies on
odometry to maintain its own coordinate system and its current
heading.

4.3.4 How Do Robots Know Where to Go?
A typical robot navigates the world and avoids obstacles by using
a path planner to search for suitable routes; an execution monitor
ensures that the robot stays on the chosen route. Sphero does not
have a built-in path planner or plan execution monitor, but the
features of both can be implemented either by an external mobile
application communicating with the robot, or using orbBasic code
executed by the robot itself.

4.3.5 How Do Robots Control Their Bodies?
Kinematic solvers and kinematic trees are used to translate
between the robot body coordinates and joint angles. The absence
of any external moving parts requires shifting the focus of
discussion from kinematics to the algorithms controlling the two
motors inside the robotic ball.

4.3.6 What Can We Do When a Robot Becomes Too
Complex for One Person to Fully Understand It?
Any robot is a very complex system comprising both hardware
and software parts designed for close synergistic cooperation.
Abstraction of functionality and modular design must be used to
manage complexity of any robotic system. Sphero provides
developers with different ways to program the robot at three
different levels of abstraction: low-level orbBasic code executed
by the robot itself, macros, and SDK-based apps running on an
external mobile device. Furthermore, Sphero Android and iOS
SDKs provide access to the robot’s features at different levels of
abstraction ranging from telling the robot to roll at a given speed
or catching collision events to controlling the settings of a single
motor or reading individual serialized packets containing raw
accelerometer data.

4.3.7 How Do We Calculate the Quantities Needed
To Make a Robot Function?
Robotics as a discipline is grounded in mathematics. Geometry,
linear algebra, and trigonometry are essential in planning and
executing the movement of a robot. Programming complex paths
for Sphero often requires transforming one coordinate system to
another. Enabling Sphero to move specific distances requires
mapping and calibrating its time-based motor control and speeds
measured in percentages of the maximum velocity into a different
measurement system. Digital signal processing, such as applying
Fourier transform, is needed to extract meaning out of a stream of
sensor readouts, for example for detecting Sphero collisions with
obstacles. Robots equipped with cameras use computer vision
algorithms, which rely on feature extraction algorithms, such as
Hough transform, to detect basic shapes.

5. ANDROID+SPHERO IN PRACTICE
Any mobile application development course needs to emphasize
the features that are unique to the mobile platform, e.g. taking
advantage of the data collected by sensors, integrating live feed
from the camera, using enhanced connectivity options to
communicate with other services and devices, integration of
telephony and messaging, etc. A course that combines mobile
computing with the elements of robotics needs to leverage the
features common to both types of devices. Such a course should
also have a strong focus on hands-on activities that emphasize
these similarities, as well as a symbiotic relationship that exists
between mobile and robotics devices in a single complex system.
Keeping these considerations in mind, course topics could include
the following:

Introduction. Why is application development for a mobile
platform different compared to other platforms? What are the
differences and similarities between Android and other mobile
operating systems?

Android platform. What is common between Android and
Linux? How does Android software stack work and what does it
consist of? How are typical Android apps started, executed, and
terminated?

Android app UI. How do Android apps interact with the user?
What is the role of the Model-View-Controller design pattern in
Android application development?

Intents. How do Android apps communicate with each other and
with the operating system? What can be done to leverage the
functionality of other Android apps?

Persistent data. What options are there for Android apps to store
and retrieve persistent data? What makes working with persistent
data on a mobile device different from doing the same on a
desktop?

Sensors. What types of sensors are typically available to Android
apps and how to work with them? Why do we need virtual sensors
and what are their advantages? How to create an event-driven app
that works with sensor readouts?

Introduction to robotics with Sphero. What are the features of a
typical robotic device? What can Sphero do and is it really an
autonomous robot? What’s inside of it and how do its components
work together?

Motion. How do you program Sphero to move? How does it
know where to go? What sensors make Sphero keep its course and
remember its heading after collisions?

66

Sensor data. What can apps do with the sensor data streaming
from Sphero? What sensor data can be streamed and how can it be
transformed and interpreted to become more useful? How to use
Sphero as a 3D controller for other applications?

Collision detection. How does Sphero detect collisions with other
objects? What is the role of Fourier transform in detecting
collisions? Why is there a data reliability threshold in collision
detection?

Autonomous behavior. What is the fundamental difference
between three models of controlling Sphero: sending individual
commands, executing macros, and running orbBasic programs?
What are the characteristics of an autonomous robot and can
Sphero become one?

The prerequisites of our course combining mobile application
development and robotics is positioned in the program ensure that
all students have a substantial programming experience and a
working knowledge of trigonometry and linear algebra. The
course is structured so that there are two weekly meetings lasting
1 hour and 15 minutes each. Typically, every week is dedicated to
a single topic with a lecture and demonstrations during the first
meeting and a hands-on lab during the second. Students work in
teams of two on every lab and the course project, which promotes
good teamwork skills. Such an arrangement also helps alleviate
any possible equipment-related problems: students can share one
Android device and one Sphero per team.

5.1 Hands-on Labs
No mobile application development or robotics course would be
complete without an extensive set of labs aimed to complement
the theoretical concepts with practical hands-on experiences. A
sequence of hands-on labs of increasing levels of complexity is
also essential to keeping students engaged with the course
material. Additionally, staging the material so that every new
experience reuses and builds upon the results of the previous lab
helps maximize the depth of the covered material. The goal of
each lab is to produce a fully functional Android app. Labs
include the following:

• Creating Android app layouts and different Android views
using XML;

• Retrieving data from a remote host with the help of intents
and HTTP connections;

• Manipulating shared preferences and local resource data;

• Implementing an Android shake counter with accelerometer
readouts;

• Driving Sphero with a simple GUI-based controller;

• Creating an etch-a-sketch app (or a snake game) and using
Sphero as a 3D controller; and

• Experimenting with detecting collisions with walls and other
robots.

Students are encouraged to complete and demo each lab during
the class time, but this may not always be possible, in which case
they have at least two full days to complete their work. Each lab is
accompanied with a set of scaffolding code, which is ready to be
imported into Eclipse. Android code included in the scaffolding
projects spares students from setting up the Eclipse project,
creating the user interface, and performing other routine work.
This helps students focus on the task at hand concentrating on the

topic of the current lab exercise. Scaffolding code provided with
each lab ensures that regardless of their previous work, students
always have a level starting point, which maximizes their chances
for success.

5.2 Course Project
Project-based learning [6,17] creates an environment where
students acquire such soft skills as time management, project
planning, and effective teamwork, that are not always an explicit
part of the CS curriculum, but are demanded by the employers. A
team-based course project allowed students to practice many
concepts presented in this course by creating an application for
scripting the behavior of a Sphero robot. This project required
students to apply the following skills that underscore the
interdisciplinary nature of the course:

• Mobile computing: implementing a complex Android
application utilizing a broad range of features specific to the
mobile platform;

• Operating systems: design and implement a real-time
multithreaded controller for a wirelessly connected robot;

• Human-computer interaction: design a user-friendly mobile
interface for script editing, storage, and retrieval;

• Programming languages: design and implement a simple
parser for custom scripts controlling the robot’s behavior;

• Computer communications and networking: implement an
HTTP-based connection to retrieve text-based scripts from a
URL; implement asynchronous data transfer between the
robot’s sensors and a mobile device over Bluetooth;

• Robotics: use a set of well-defined commands to control the
motors of the robot enabling it to move at given speeds: roll
along a straight line of a given length, roll along an arc with a
given radius and angle; turn in place; and change the LED
color;

• Linear algebra: transform the robot’s coordinate system and
an absolute heading into a coordinate system with a relative
heading; convert the robot’s odometry into real-world speed
metrics;

• Physics: understand and account for the effects of floor
traction at low speeds.

The course project culminated in a robot race, in which Spheros
competed for accuracy of navigation. At the time of competition,
student teams were given a script that described a course shown in
Figure 1 and Figure 2.

Figure 1. Sphero race track (drawn to scale).

1 m

0.
5

m

1 m

1.1 m

0.5 m0.5 m

0.5 m

0.4 m

0.5 m

1
m

90º

270º

FI
N
IS
H

ST
A
R
T

67

Figure 2. Sphero robots on the race track.

Student competitions such as the Sphero race offer an opportunity
to support the intellectual growth of students by helping them find
their own solution to a problem and understand that there could be
many different, but correct ways to reach the goal, that there could
be multiple right answers to the same research question, and that
there could be more than one working solution to the stated
practical problem. Such an approach promotes critical thinking by
encouraging students to identify problems, find and evaluate
different solutions, work in teams toward achieving a common
goal, and apply theoretical concepts in practice [6]. Furthermore,
student project competitions in general, as well as those involving
robotics, can help get more students involved in research, offer
students additional motivational factors, and make the learning
process more experiential [16,19].

6. STUDENT FEEDBACK
At the conclusion of the course, student provided feedback
representing their perception of the course quality, learning
outcomes, and possible improvements.
The vast majority of students appreciated the combination of
mobile computing and robotics and their symbiotic relationship:

Sphero+Android is a unique medium and they work very well
together. It holds interest as a subject matter and Android
seems like a relevant system to learn.
It's totally different from any other CS course, and in a good
way! You get to use programming knowledge in a fun way
and it's a cool feeling to see something move/happen with
your code.
Mobile programming is growing as an almost essential
component of CS education. Robotics is awesome. You get to
flex your creative muscles. We play with toys!

When asked about the most interesting hands-on components of
the course, a clear consensus emerged: all students preferred
either the final course project or the etch-a-sketch lab, the two
activities that made the biggest emphasis on combining robotics
and mobile application development.

Etch-a-sketch: it opened up new doors for using a robot as
an interface device.
Final project: real application and very challenging to figure
out how to get distance/arc to work.
The course project: though large, it integrated many subject
areas and it was satisfying to see the results.

Problems related to technical issues, such as setting up Eclipse
and debugging the Sphero code were the most frustrating to
students. Aside from the first hands-on lab activity being too easy,
there were very few other complaints about the course content.

7. CONCLUSION AND FUTURE WORK
It is generally accepted that the broad goal of using educational
robots is not to create experts in robotics, but rather to help
students develop essential real-world competencies [8,18]. In the
context of intermediate and advanced computing courses,
experiences with robotics could offer students an opportunity to
combine the theoretical material from various sub-disciplines of
computing and apply them in an engaging practical setting.
Experiences described in this paper also give students
competencies in the areas that are normally not covered by other
topical courses in computing. These include working with
complex hardware/software systems at a lower level, getting
hands-on systems programming experience, integrating hardware
sensors with control software, understanding practical aspects of
real-time and embedded systems, working with uncertainty of the
robot’s perception of the real world through sensors, and applying
best software engineering practices to solve problems.

Unsurprisingly, student feedback revealed that there is a lot of
room for improvement. The objective of the first course offering
described here was to balance the material equally between
mobile computing and robotics, placing the introduction of
Sphero in the middle of the semester. However, in order to better
prepare students for the final project, the course schedule may
need to be more front-loaded, thus freeing the end of the semester
of any new theoretical material and giving students more time to
experiment.

8. ACKNOWLEDGMENTS
The author would like to thank his students who enthusiastically
completed all labs and projects in the Android+Sphero course and
provided very valuable feedback. The author is also thankful to
the entire Orbotix team for providing Sphero robots, guidance,
and feedback throughout the development of the course described
here.

9. REFERENCES
[1] Anderson, M., McKenzie, A., Wellman, B., Brown, M.,

Vrbsky, S. 2011. Affecting attitudes in first-year computer
science using syntax-free robotics programming. ACM
Inroads, 2, 3 (Aug. 2011), 51-57.
http://doi.acm.org/10.1145/2003616.2003635.

[2] Apiola, M., Lattu, M., Pasanen, T.A. 2010. Creativity and
intrinsic motivation in computer science education:
experimenting with robots. In Proceedings of the 15th annual
conference on Innovation and technology in computer
science education (ITiCSE '10). ACM, New York, NY,
USA, 199-203.
http://doi.acm.org/10.1145/1822090.1822147.

[3] Ben Brahim, T., Marghitu, D. & Weaver, J. 2012. A survey
on robotic educational platforms for K-12. In Proceedings of
World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education 2012, 41-48. Chesapeake,
VA: AACE.

[4] Bogle, S.A., Potter, W.D. 2011. Using robot based learning
to enhance CS curriculum delivery, In Proceedings of the
11th IEEE International Conference on Advanced Learning

68

Technologies (ICALT) (Jul. 2011), 576-578,
http://dx.doi.org/10.1109/ICALT.2011.174.

[5] Burd, B., Barros, J.P., Johnson, C., Kurkovsky, S.,
Rosenbloom, A. Tillman, N. 2012. Educating for mobile
computing: addressing the new challenges. In Proceedings of
the final reports on Innovation and technology in computer
science education 2012 working groups (ITiCSE-WGR '12),
ACM, New York, NY, USA. 51-63.
http://doi.acm.org/10.1145/2426636.2426641.

[6] Cappelleri, D. J., Vitoroulis, N. 2013. The robotic decathlon:
project-based learning labs and curriculum design for an
introductory robotics course. IEEE Transactions on
Education, [EARLY ACCESS], Feb. 2013.
http://dx.doi.org/10.1109/TE.2012.2215329.

[7] Carter, J., Matthews, S., Coupland, S. 2011. Teaching
robotics at the postgraduate level: Assessment and feedback
for on site and distance learning. In Proceedings of
International Conference on Robotics in Education. 171-176.

[8] Cielniak, G., Bellotto, N., Duckett, T. 2012. Integrating
mobile robotics and vision with undergraduate computer
science. IEEE Transactions on Education.
http://dx.doi.org/10.1109/TE.2012.2213822.

[9] Dodds, Z., Greenwald, L., Howard, A., Tejada, S., Weinberg,
J. 2006. Components, curriculum, and community: Robots
and robotics in undergraduate AI education. AI Magazine,
27, 1 (Spring 2006), 11-22.

[10] Doerschuk, P., Liu, J., Mann, J. 2009. INSPIRED broadening
participation: first year experience and lessons learned.
In Proceedings of the 14th annual ACM SIGCSE conference
on Innovation and technology in computer science education
(ITiCSE '09). ACM, New York, NY, USA, 238-242.
http://doi.acm.org/10.1145/1562877.1562952.

[11] Kay, J.S. 2011. Contextualized approaches to introductory
computer science: the key to making computer science
relevant or simply bait and switch? In Proceedings of the
42nd ACM technical symposium on Computer science
education (SIGCSE '11). ACM, New York, NY, USA, 177-
182. http://doi.acm.org/10.1145/1953163.1953219.

[12] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., Malyn-Smith, J., Werner, L. 2011.
Computational thinking for youth in practice. ACM Inroads,
2, 1 (Feb. 2011), 32-37.
http://doi.acm.org/10.1145/1929887.1929902.

[13] Major, L., Kyriacou, T., Brereton, O. P. 2011. Systematic
literature review: Teaching novices programming using
robots, In Proceedings of 15th Annual Conference on
Evaluation & Assessment in Software Engineering (EASE
2011), 21-30, Apr. 2011.
http://dx.doi.org/10.1049/ic.2011.0003.

[14] McGill, M.M. 2012. Learning to Program with Personal
Robots: Influences on Student Motivation. Transactions on
Computing Education. 12, 1 (Mar. 2012).
http://doi.acm.org/10.1145/2133797.2133801.

[15] Muppala, J.K. 2011. Teaching embedded software concepts
using Android. In Proceedings of the 6th Workshop on
Embedded Systems Education (Oct. 2011). ACM, New York,
NY, USA, 32-37.
http://doi.acm.org/10.1145/2077370.2077375.

[16] Murphy, R.R. 2001. ‘Competing’ for a robotics education,
Robotics & Automation Magazine, IEEE, 8, 2 (Jun. 2001),
44-55. http://dx.doi.org/10.1109/100.932757.

[17] Qidwai, U. 2011. Fun to learn: project-based learning in
robotics for computer engineers. ACM Inroads. 2, 1 (Feb.
2011), 42-45. http://doi.acm.org/10.1145/1929887.1929904.

[18] Pitti, K., Curto, B., Garcia, J. Moreno, V. 2010. NXT
workshops: Constructionist learning experiences in rural
areas. In Proceedings of International Workshop “Teaching
robotics, teaching with robotics”, Darmstadt, Germany, Nov.
2010.

[19] Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L., Fiorini,
P. 2012. A review of robotics kits for tertiary education. In
Proceedings of International Workshop Teaching Robotics
Teaching with Robotics: Integrating Robotics in School
Curriculum, 153-162, Riva del Garda, Italy, Apr. 2012.

[20] Touretzky, D.S. 2012. Seven big ideas in robotics, and how
to teach them. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education (SIGCSE '12).
ACM, New York, NY, USA, 39-44.
http://doi.acm.org/10.1145/2157136.2157152.

[21] Uludag, S., Karakus, M., Turner, S. W. 2011. Implementing
IT0/CS0 with scratch, app inventor for Android, and Lego
Mindstorms. In Proceedings of the 2011 conference on
Information technology education (SIGITE '11) (Oct. 2011).
ACM, New York, NY, USA, 183-190.
http://doi.acm.org/10.1145/2047594.2047645.

[22] Wang, M.-T., Huang, P.-C., Lee, J.-K., Lai, S.-H., Jang, R.,
Chang, C.-F., Liu, C.-W., Kuo, T.-W., Liao, S. 2010. Support
of Android lab modules for embedded system curriculum. In
Proceedings of the 2010 Workshop on Embedded Systems
Education (Oct 2010). ACM, New York, NY, USA.
http://doi.acm.org/10.1145/1930277.1930281.

[23] Wolber, D. 2011. App inventor and real-world motivation. In
Proceedings of the 42nd ACM technical symposium on
Computer science education (Jun. 2011). ACM, New York,
NY, USA, 601-606.
http://doi.acm.org/10.1145/1953163.1953329.

69

