
Using Scaffolding to Simplify FOSS Adoption
Stan Kurkovsky

Central Connecticut State University
New Britain, CT, USA
kurkovsky@ccsu.edu

ABSTRACT
Free and open source software (FOSS) have become a popular frame-
work for introducing students to professional software development.
Despite a great variety of advantages, there is a significant number
of barriers to a broader adoption of FOSS projects in computing
education. We present a number of techniques forming a scaffolded
agile approach to externally-sourced software engineering projects
that help address some of the barriers to FOSS adoption.

CCS CONCEPTS
• Software and its engineering → Open source model.

KEYWORDS
Software engineering, FOSS, student projects
ACM Reference Format:
Stan Kurkovsky. 2022. Using Scaffolding to Simplify FOSS Adoption. In
Proceedings of the 27th ACM Conference on Innovation and Technology in
Computer Science Education Vol 2 (ITiCSE 2022), July 8–13, 2022, Dublin,
Ireland. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3502717.
3532163

1 INTRODUCTION
In recent years, the use of free and open source software (FOSS)
projects gained a significant momentum [1, 2]. FOSS provides stu-
dents with an opportunity to participate in large-scale projects
where they can apply their knowledge to solve real-world comput-
ing problems while playing an active role within a professional
software developer community. FOSS projects are characterized
by being community-based, open to new contributors, offering a
high degree of transparency given their open-source nature, being
globally distributed, and encouraging student initiative through
a meritocratic process. However, FOSS practitioners report that
despite many highly-attractive features of such projects, there is
a significant number of barriers to a broader adoption of FOSS in
computing education. Here, we describe a number of techniques
that help address some of these barriers.

2 SOFTWARE ENGINEERING STUDIO
Software Engineering Studio at Central Connecticut State Univer-
sity is a framework that connects external clients with teams of
undergraduate students working on software development projects.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9200-6/22/07.
https://doi.org/10.1145/3502717.3532163

Since 2014, over 90 teams consisting of 4-5 students worked on
nearly 60 unique projects for 35 distinct clients. 24 of these clients
are non-profit or community organizations; most of their projects
were developed using the FOSS model. Student teams work closely
with their customers to create working solutions from inception
through the software development life cycle to deployment and
ongoing maintenance. Over the years, these externally-sourced
projects evolved into a highly-scaffolded framework that provides
enough structure to ensure project success while being flexible to
provide teams with enough agility for adapting to evolving require-
ments and addressing any emerging challenges.

Students from two senior courses, Software Engineering (SE) and
Senior Project (SP), work on all projects supported by the Studio.
Student teams in the SE course are formed during the first week.
The rest of the 15-week SE course consists of a series of 2-week
iterations as shown in Table 1. The SP course consists of seven
2-week development sprints. A typical project lasts two to three
semesters. After the first semester, students who worked on a given
project in the SE course, continue into the SP course and work with
new SE student teams ensuring project continuity and knowledge
transfer. Ongoing maintenance issues are typically addressed by
teams in the SP course.We believe that our scaffolded agile approach
addresses a number of FOSS challenges described below [1–3].

2.1 Steep Learning Curve
One of the main challenges of FOSS projects is the steep learning
curve concerning a diverse range of project characteristics. For
example, the project domain complexity, significant scale of the
project codebase, and diversity of technical toolsmay be overwhelm-
ing. In our approach, we gently nudge student teams to incremen-
tally dive deeper into the project and understand its requirements
through frequent and direct interactions with the project client.
The same sequence is used to help a new team gain a high-level
understanding of the existing codebase and the corresponding re-
quirements along with the new or changing features that they will
be responsible for. Three deliverables (numbered 2-4 in Table 1)
are aimed to provide a reasonable on-ramping to prepare teams for
more technical aspects of the project.

2.2 Project/Course Synchronization
A community-driven structure of a FOSS project may not always
be a good fit for the relatively rigid schedule of a typical course.
Because FOSS project communities are comprised of volunteers,
there is never a guaranteed time frame when student questions
will be answered or how soon student coding contributions can be
approved by the project maintainers. By providing a development
sprint structure to the project and by ensuring that the core of
project contributors is comprised of students, it becomes easier to

Session: Tips, techniques, and courseware ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

587

https://doi.org/10.1145/3502717.3532163
https://doi.org/10.1145/3502717.3532163
https://doi.org/10.1145/3502717.3532163

Week Project Element Scaffolding/Deliverable
1 Introduction Students teams are formed
2-3 Inception 1. Student team agreement
4-5 Introduction to agile 2. High-level requirements overview
6-7 Requirements outline 3. Product backlog

4. Refined product backlog
5. Mid-point presentation

8-15 Development (4 sprints) 6. Sprint plan/backlog (x4)
7. Sprint review (x4)
8. Sprint retrospective (x4)
9. User and developer documentation

Table 1: Scaffolded structure of a software engineering course project

provide a reasonable cadence to all project participants and align it
with a typical course schedule.

2.3 Evaluation and Grading
Computing education practitioners using FOSS projects in class-
room report that it is often challenging to properly evaluate stu-
dent contribution to the project. What if their code modifications
were rejected by the maintainers? What if the feature that they
were working on for several weeks is no longer needed? In our
approach, we require students to produce a number of deliverables,
both as written reports and as presentations. These deliverables
provide a rich selection for various aspects of grading that allows
the instructor to evaluate students’ technical writing, design skills,
communication skills, not to mention their technical contributions
to the project codebase.

2.4 Project Scope Management
While the majority of HFOSS projects focus on large-scale projects
with a multitude of stakeholders, our efforts focused on working
with small non-profit and community organizations. In addition
to increasing student motivation due to a significant community
engagement factor, our approach is advantageous from several per-
spectives. Students work directly with a clearly-identified project
client who serves as a one-stop shop for addressing most concerns
regarding the project functional and non-functional requirements.
Most importantly, a direct contact with the client provides instruc-
tor with an opportunity to negotiate or adjust the project scope
early enough to make sure that it meets both customer expectations
and student capabilities. Our approach provides a scaffolding of
various deliverables scattered throughout the project that requires
students to constantly communicate with the project client.

2.5 Reasonable Instructor Involvement
Many approaches to using FOSS in education require instructor to
negotiate with the existing project community about the kinds of
contributions students can make, the level of support, and the fre-
quency of communication that the community can provide. Some
FOSS practitioners advocate for the instructor to be responsible for
formulating all project requirements to ensure that student teams
stay on track in a typical community-driven FOSS project. These
factors may result in a very significant commitment on the instruc-
tor’s time and effort. Our scaffolded approach helps alleviate this

issue. By controlling the project scope from the outset, the instruc-
tor can ensure that the overall set of requirements is feasible, which
will be reflected in the refined product backlog. Given a reasonable
scope of the project backlog and taking into account priorities and
product values identified by the project client, student teams iden-
tify specific goals and work toward achieving them during several
development sprints. At the end of each sprint, teams present their
outcomes to the client during a sprint review and reflect on the
lessons learned during a sprint retrospective. These elements are an
integral part of our scaffolded approach ensuring that teams stay
on track and make a measurable progress. This also helps ensure
that the instructor’s involvement in the project management is rea-
sonable because s/he can rely on each team to formulate detailed
project requirements and commit to each sprint goal.

2.6 Project Outcomes
Despite the many advantages of FOSS projects from the student
learning perspective, the amount of students’ tangible contribu-
tions to the end goals of a typical project is usually limited. This is
due to the overall project complexity, lack of a clear project time-
line, and the open community-driven nature of the project. Our
approach helped us achieve successful outcomes for a great number
of projects where we worked with local clients who were commit-
ted to being engaged with student teams throughout the duration
of each project. Project scaffolding helped ensure that for every
project increment encompassing a given semester, all stakeholders
were on the same page regarding the scope and the nature of the
project features and about the project progress throughout every
sprint.

REFERENCES
[1] Grant Braught, John Maccormick, James Bowring, Quinn Burke, Barbara Cut-

ler, David Goldschmidt, Mukkai Krishnamoorthy, Wesley Turner, Steven Huss-
Lederman, Bonnie Mackellar, and Allen Tucker. 2018. A Multi-Institutional Per-
spective on H/FOSS Projects in the Computing Curriculum. ACM Trans. Comput.
Educ. 18, 2, Article 7 (jul 2018), 31 pages. https://doi.org/10.1145/3145476

[2] Heidi J. C. Ellis, Gregory W. Hislop, Stoney Jackson, and Lori Postner. 2015. Team
Project Experiences in Humanitarian Free and Open Source Software (HFOSS).
ACM Trans. Comput. Educ. 15, 4, Article 18 (dec 2015), 23 pages. https://doi.org/
10.1145/2684812

[3] Lori Postner, Darci Burdge, Heidi J. C. Ellis, Stoney Jackson, and GregoryW. Hislop.
2019. Impact of HFOSS on Education on Instructors. In Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer Science Education (Aberdeen,
Scotland Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY,
USA, 285–291. https://doi.org/10.1145/3304221.3319765

Session: Tips, techniques, and courseware ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

588

https://doi.org/10.1145/3145476
https://doi.org/10.1145/2684812
https://doi.org/10.1145/2684812
https://doi.org/10.1145/3304221.3319765

	Abstract
	1 Introduction
	2 Software Engineering Studio
	2.1 Steep Learning Curve
	2.2 Project/Course Synchronization
	2.3 Evaluation and Grading
	2.4 Project Scope Management
	2.5 Reasonable Instructor Involvement
	2.6 Project Outcomes

	References

