Objectives

- To explain what a socio-technical system is and the distinction between this and a computer-based system
- To introduce the concept of emergent system properties such as reliability and security
- To explain system engineering and system procurement processes
- To explain why the organizational context of a system affects its design and use
- To discuss legacy systems and why these are critical to many businesses
Systems - and All about Them

What is a system?
- A purposeful collection of inter-related components working together to achieve some common objective.
- A system may include software, mechanical, electrical and electronic hardware and be operated by people.
- System components are dependent on other system components
- The properties and behavior of system components are inextricably intermingled

Categories
- Technical computer-based systems
 - Systems that include hardware and software but where the operators and operational processes are not normally considered to be part of the system. The system is not self-aware.
- Socio-technical systems
 - Systems that include technical systems but also operational processes and people who use and interact with the technical system. Socio-technical systems are governed by organizational policies and rules.

Socio-Technical System Characteristics

Emergent properties
- Properties of the system of a whole that depend on the system components and their relationships.

Non-deterministic
- They do not always produce the same output when presented with the same input because the system’s behavior is partially dependent on human operators.

Complex relationships with organizational objectives
- The extent to which the system supports organizational objectives does not just depend on the system itself.
Emergent Properties

- Properties of the system as a whole rather than properties that can be derived from the properties of components of a system
- Emergent properties are a consequence of the relationships between system components
- They can therefore only be assessed and measured once the components have been integrated into a system

- Types of emergent properties
 - **Functional properties**
 - These appear when all the parts of a system work together to achieve some objective. For example, a bicycle has the functional property of being a transportation device once it has been assembled from its components.
 - **Non-functional emergent properties**
 - Examples are reliability, performance, safety, and security. These relate to the behavior of the system in its operational environment. They are often critical for computer-based systems as failure to achieve some minimal defined level in these properties may make the system unusable.

Examples of Emergent Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>The volume of a system (the total space occupied) varies depending on how the component assemblies are arranged and connected.</td>
</tr>
<tr>
<td>Reliability</td>
<td>System reliability depends on component reliability but unexpected interactions can cause new types of failure and therefore affect the reliability of the system.</td>
</tr>
<tr>
<td>Security</td>
<td>The security of the system (its ability to resist attack) is a complex property that cannot be easily measured. Attacks may be devised that were not anticipated by the system designers and so may defeat built-in safeguards.</td>
</tr>
<tr>
<td>Repairability</td>
<td>This property reflects how easy it is to fix a problem with the system once it has been discovered. It depends on being able to diagnose the problem, access the components that are faulty and modify or replace these components.</td>
</tr>
<tr>
<td>Usability</td>
<td>This property reflects how easy it is to use the system. It depends on the technical system components, its operators and its operating environment.</td>
</tr>
</tbody>
</table>
System Reliability Engineering

- Because of component inter-dependencies, faults can be propagated through the system.
- System failures often occur because of unforeseen inter-relationships between components.
- It is probably impossible to anticipate all possible component relationships.
- Software reliability measures may give a false picture of the system reliability.

- Hardware reliability
 - What is the probability of a hardware component failing and how long does it take to repair that component?

- Software reliability
 - How likely is it that a software component will produce an incorrect output. Software failure is usually distinct from hardware failure in that software does not wear out.

- Operator reliability
 - How likely is it that the operator of a system will make an error?

Reliability Relationships

- Hardware failure can generate spurious signals that are outside the range of inputs expected by the software.
- Software errors can cause alarms to be activated which cause operator stress and lead to operator errors.
- The environment in which a system is installed can affect its reliability.

- Properties such as performance and reliability can be measured.
- However, some properties are properties that the system should not exhibit
 - Safety - the system should not behave in an unsafe way;
 - Security - the system should not permit unauthorized use.
- Measuring or assessing these properties is very hard.
Systems Engineering

- Specifying, designing, implementing, validating, deploying and maintaining socio-technical systems.
- Concerned with the services provided by the system, constraints on its construction and operation and the ways in which it is used.

The system engineering process

- Usually follows a “waterfall” model because of the need for parallel development of different parts of the system
 - Little scope for iteration between phases because hardware changes are very expensive. Software may have to compensate for hardware problems.
- Inevitably involves engineers from different disciplines who must work together
 - Much scope for misunderstanding here. Different disciplines use a different vocabulary and much negotiation is required. Engineers may have personal agendas to fulfill.

The Systems Engineering Process

```
<table>
<thead>
<tr>
<th>Requirements definition</th>
<th>System design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-system development</td>
<td>System installation</td>
</tr>
<tr>
<td>System evolution</td>
<td>System decommissioning</td>
</tr>
</tbody>
</table>
```

Stan Kurkovsky
Interdisciplinary Involvement

- Example: air traffic control (ATC) system

![Diagram showing interdisciplinary involvement in ATC systems engineering](diagram.png)

System Requirements

- Three types of requirement defined at this stage
 - Abstract functional requirements. System functions are defined in an abstract way.
 - System properties. Non-functional requirements for the system in general are defined (e.g. availability, performance, safety).
 - Undesirable characteristics. Unacceptable system behavior is specified.

- Objectives
 - Functional objectives. E.g. to provide a fire and intruder alarm system for the building which will provide internal and external warning of fire or unauthorized intrusion.
 - Organizational objectives. E.g. to ensure that the normal functioning of work carried out in the building is not seriously disrupted by events such as fire and unauthorized intrusion.

- Complex systems are usually developed to address wicked problems
 - Problems that are not fully understood;
 - Changing as the system is being specified.

- Must anticipate hardware/communications developments over the lifetime of the system.

- Hard to define non-functional requirements (particularly) without knowing the component structure of the system.
The System Design Process

- **Partition requirements**
 - Organize requirements into related groups.
- **Identify sub-systems**
 - Identify a set of sub-systems which collectively can meet the system requirements.
- **Assign requirements to sub-systems**
 - Causes particular problems when off-the-shelf (COTS) systems are integrated.
- **Specify sub-system functionality**
- **Define sub-system interfaces**
 - Critical activity for parallel sub-system development.

Problems

- Requirements partitioning to hardware, software and human components may involve a lot of negotiation.
- Difficult design problems are often assumed to be readily solved using software.
- Hardware platforms may be inappropriate for software requirements so software must compensate for this.

Requirements and Design

- Requirements engineering and system design are inextricably linked.
- Constraints posed by the system’s environment and other systems limit design choices so the actual design to be used may be a requirement.
- Initial design may be necessary to structure the requirements.
- As you do design, you learn more about the requirements.
System Modeling

- An architectural model presents an abstract view of the sub-systems making up a system
- May include major information flows between sub-systems
- Usually presented as a block diagram
- May identify different types of functional component in the model

- Example: burglar alarm system

Architectural Modeling

- Example: air traffic control (ATC) system
Sub-system Development

- Typically parallel projects developing the hardware, software and communications.
- May involve some COTS (Commercial Off-the-Shelf) systems procurement.
- Lack of communication across implementation teams.
- Bureaucratic and slow mechanism for proposing system changes means that the development schedule may be extended because of the need for rework.

System Integration and Installation

Integration

- The process of putting hardware, software and people together to make a system.
- Should be tackled incrementally so that sub-systems are integrated one at a time.
- Interface problems between sub-systems are usually found at this stage.
- May be problems with uncoordinated deliveries of system components.

Installation

- Environmental assumptions may be incorrect.
- May be human resistance to the introduction of a new system.
- System may have to coexist with alternative systems for some time.
- May be physical installation problems (e.g. cabling problems).
- Operator training has to be identified.
System Evolution and Decommissioning

Evolution
- Large systems have a long lifetime. They must evolve to meet changing requirements.
- Evolution is inherently costly
 - Changes must be analyzed from a technical and business perspective;
 - Sub-systems interact so unanticipated problems can arise;
 - There is rarely a rationale for original design decisions;
 - System structure is corrupted as changes are made to it.
- Existing systems which must be maintained are sometimes called legacy systems.

Decommissioning
- Taking the system out of service after its useful lifetime.
- May require removal of materials (e.g. dangerous chemicals) which pollute the environment
 - Should be planned for in the system design by encapsulation.
- May require data to be restructured and converted to be used in some other system.

Organizations/ People/ Systems

- Socio-technical systems are organizational systems intended to help deliver some organizational or business goal.
- If you do not understand the organizational environment where a system is used, the system is less likely to meet the real needs of the business and its users.

- Human and organizational factors
- Process changes
 - Does the system require changes to the work processes in the environment?
- Job changes
 - Does the system de-skill the users in an environment or cause them to change the way they work?
- Organizational changes
 - Does the system change the political power structure in an organization?
Organizational Processes

- The processes of systems engineering overlap and interact with organizational procurement processes.
- Operational processes are the processes involved in using the system for its intended purpose. For new systems, these have to be defined as part of the system design.
- Operational processes should be designed to be flexible and should not force operations to be done in a particular way. It is important that human operators can use their initiative if problems arise.

System Procurement

- Acquiring a system for an organization to meet some need
- Some system specification and architectural design is usually necessary before procurement
 - You need a specification to let a contract for system development
 - The specification may allow you to buy a commercial off-the-shelf (COTS) system. Almost always cheaper than developing a system from scratch
- Large complex systems usually consist of a mix of off the shelf and specially designed components. The procurement processes for these different types of component are usually different.
Procurement Issues and Subcontractors

- **Issues**
 - Requirements may have to be modified to match the capabilities of off-the-shelf components.
 - The requirements specification may be part of the contract for the development of the system.
 - There is usually a contract negotiation period to agree changes after the contractor to build a system has been selected.

- **Subcontractors**
 - The procurement of large hardware/software systems is usually based around some principal contractor.
 - Sub-contracts are issued to other suppliers to supply parts of the system.
 - Customer interacts with the principal contractor and does not deal directly with sub-contractors.

Legacy Systems

- Socio-technical systems that have been developed using old or obsolete technology.
- Crucial to the operation of a business and it is often too risky to discard these systems
 - Bank customer accounting system;
 - Aircraft maintenance system.
- Legacy systems constrain new business processes and consume a high proportion of company budgets.

- Layered model of a legacy system
- Strong inter-dependency between layers
Legacy Systems

- **Support software** runs on **System hardware**. It uses **Application software** and embeds knowledge of **Business policies and rules**.

- **Application software** runs on **System hardware**. It uses **Application data** and **Business processes**.

- **Business processes** use **Application data**.

- **Application data** is used by **Support software**.

- **Business policies and rules** use **Application data**.

Summary

- Socio-technical systems include computer hardware, software and people and are designed to meet some business goal.
- Emergent properties are properties that are characteristic of the system as a whole and not its component parts.
- The systems engineering process includes specification, design, development, integration and testing. System integration is particularly critical.
- Human and organizational factors have a significant effect on the operation of socio-technical systems.
- There are complex interactions between the processes of system procurement, development and operation.
- A legacy system is an old system that continues to provide essential services.
- Legacy systems include business processes, application software, support software and system hardware.