Computer Networking

Broadcast and Multicast

Broadcast Routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

 - source duplication: how does source determine recipient addresses?
In-network duplication

- flooding: when node receives brdcst pckt, sends copy to all neighbors
 - Problems: cycles & broadcast storm
- controlled flooding: node only brdcsts pkt if it hasn’t brdcst same packet before
 - Node keeps track of pckt ids already brdcsted
 - Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source
- spanning tree
 - No redundant packets received by any node

Spanning Tree

- First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A
(b) Broadcast initiated at D
Spanning Tree: Creation

- Center node
- Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to spanning tree

(a) Stepwise construction of spanning tree

(b) Constructed spanning tree

Multicast Routing: Problem Statement

- **Goal:** find a tree (or trees) connecting routers having local mcast group members
 - tree: not all paths between routers used
 - source-based: different tree from each sender to rcvs
 - shared-tree: same tree used by all group members

Shared tree

Source-based trees
Approaches for building mcast trees

Approaches:
- **source-based tree**: one tree per source
 - shortest path trees
 - reverse path forwarding
- **group-shared tree**: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches

Shortest Path Tree

- **mcast forwarding tree**: tree of shortest path routes from source to all receivers
 - Dijkstra’s algorithm

Legend
- `S`: source
- `R1`, `R2`, `R3`, `R4`, `R5`, `R6`, `R7`: routers
- `1`, `2`, `3`, `4`, `5`, `6`: links
- `i`: link used for forwarding, `i` indicates order link added by algorithm

Broadcast and Multicast
Reverse Path Forwarding

- rely on router’s knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

 \[
 \text{if (mcast datagram received on incoming link on shortest path back to center)} \\
 \text{then flood datagram onto all outgoing links} \\
 \text{else ignore datagram}
 \]

Reverse Path Forwarding: example

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links
Reverse Path Forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - “prune” msgs sent upstream by router with no downstream group members

Shared-Tree: Steiner Tree

- Steiner Tree: minimum cost tree connecting all routers with attached group members
- problem is NP-complete
- excellent heuristics exists
- not used in practice:
 - computational complexity
 - information about entire network needed
 - monolithic: rerun whenever a router needs to join/leave
Center-based trees

- single delivery tree shared by all
- one router identified as “center” of tree
- to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg “processed” by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router

Center-based trees: an example

Suppose R6 chosen as center:

![Diagram of network with routers and connections]

LEGEND
- router with attached group member
- router with no attached group member
- path order in which join messages generated

Broadcast and Multicast
Internet Multicasting Routing: DVMRP

- **DVMRP**: distance vector multicast routing protocol, RFC1075
- **flood and prune**: reverse path forwarding, source-based tree
 - RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to mcast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune msgs

DVMRP: continued...

- **soft state**: DVMRP router periodically (1 min.) “forgets” branches are pruned:
 - mcast data again flows down unpruned branch
 - downstream router: reprune or else continue to receive data
- routers can quickly regraft to tree
 - following IGMP join at leaf
- odds and ends
 - commonly implemented in commercial routers
 - Mbone routing done using DVMRP
Tunneling

Q: How to connect “islands” of multicast routers in a “sea” of unicast routers?

- mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram
- normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router
- receiving mcast router unencapsulates to get mcast datagram

PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)
- two different multicast distribution scenarios:

 Dense:
 - group members densely packed, in “close” proximity.
 - bandwidth more plentiful

 Sparse:
 - # networks with group members small wrt # interconnected networks
 - group members “widely dispersed”
 - bandwidth not plentiful
Consequences of Sparse-Dense Dichotomy:

Dense
- group membership by routers assumed until routers explicitly prune
- *data-driven* construction on mcast tree (e.g., RPF)
- bandwidth and non-group-router processing *profligate*

Sparse:
- no membership until routers explicitly join
- *receiver-driven* construction of mcast tree (e.g., center-based)
- bandwidth and non-group-router processing *conservative*

PIM- Dense Mode

Flood-and-prune RPF, similar to DVMRP but
- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router
PIM - Sparse Mode

- center-based approach
- router sends *join* msg to rendezvous point (RP)
 - intermediate routers update state and forward *join*
- after joining via RP, router can switch to source-specific tree
 - increased performance: less concentration, shorter paths

![Diagram of PIM Sparse Mode](image)

Broadcast and Multicast

PIM - Sparse Mode

sender(s):

- unicast data to RP, which distributes down RP-rooted tree
- RP can extend mcast tree upstream to source
- RP can send *stop* msg if no attached receivers
 - “no one is listening!”

![Diagram of PIM Sparse Mode](image)

Broadcast and Multicast