Computer Networks

Routing Algorithms

Based on Computer Networking, 4th Edition by Kurose and Ross

Interplay between routing, forwarding

- Routing algorithm
- Local forwarding table
- Header value output link
 - 0100: 3
 - 0111: 2
 - 0111: 2
 - 1001: 1

Value in arriving packet's header

Stan Kurkovsky
Graph abstraction

- Graph: $G = (N,E)$
- N = set of routers = { u, v, w, x, y, z }
- E = set of links = { $(u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z)$ }
- Remark: Graph abstraction is useful in other network contexts
- Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

- $c(x,x')$ = cost of link (x,x')
 - e.g., $c(w,z) = 5$
- Cost could always be 1, or inversely related to bandwidth, or inversely related to congestion
- Cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1,x_2) + c(x_2,x_3) + ... + c(x_{p-1},x_p)$
- Question: What’s the least-cost path between u and z?
- Routing algorithm: algorithm that finds least-cost path
Routing Algorithm classification

<table>
<thead>
<tr>
<th>Global or decentralized information?</th>
<th>Static or dynamic?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global:</td>
<td>Static:</td>
</tr>
<tr>
<td>- all routers have complete topology, link cost info</td>
<td>- routes change slowly over time</td>
</tr>
<tr>
<td>- “link state” algorithms</td>
<td>- routes change more quickly</td>
</tr>
<tr>
<td>Decentralized:</td>
<td>- periodic update</td>
</tr>
<tr>
<td>- router knows physically-connected neighbors, link costs to neighbors</td>
<td>- in response to link cost changes</td>
</tr>
<tr>
<td>- iterative process of computation, exchange of info with neighbors</td>
<td></td>
</tr>
<tr>
<td>- “distance vector” algorithms</td>
<td></td>
</tr>
</tbody>
</table>

A Link-State Routing Algorithm

Dijkstra’s algorithm
- net topology, link costs known to all nodes
 - accomplished via “link state broadcast”
 - all nodes have same info
- computes least cost paths from one node (‘source’) to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k destinations

Notation:
- \(c(x,y) \): link cost from node \(x \) to \(y \); \(= \infty \) if not direct neighbors
- \(D(v) \): current value of cost of path from source to dest. \(v \)
- \(p(v) \): predecessor node along path from source to \(v \)
- \(N' \): set of nodes whose least cost path definitively known
Dijkstra’s Algorithm

1. **Initialization:**
 2. \(N' = \{u\} \)
 3. for all nodes \(v \)
 4. if \(v \) adjacent to \(u \)
 5. then \(D(v) = c(u,v) \)
 6. else \(D(v) = \infty \)

7. **Loop**
 8. find \(w \) not in \(N' \) such that \(D(w) \) is minimum
 9. add \(w \) to \(N' \)
 10. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(N' \):
 \[D(v) = \min(D(v), D(w) + c(w,v)) \]
 /* new cost to \(v \) is either old cost to \(v \) or known
 shortest path cost to \(w \) plus cost from \(w \) to \(v \) */
 11. until all nodes in \(N' \)

Dijkstra’s algorithm: example

<table>
<thead>
<tr>
<th>Step</th>
<th>(N')</th>
<th>(D(v), p(v))</th>
<th>(D(w), p(w))</th>
<th>(D(x), p(x))</th>
<th>(D(y), p(y))</th>
<th>(D(z), p(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(u)</td>
<td>2, (u)</td>
<td>5, (u)</td>
<td>1, (u)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td>(u, x)</td>
<td>2, (u)</td>
<td>4, (x)</td>
<td>2, (x)</td>
<td>(\infty)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(u, x, y)</td>
<td>2, (u)</td>
<td>3, (y)</td>
<td></td>
<td>4, (y)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(u, x, y, v)</td>
<td>3, (y)</td>
<td></td>
<td></td>
<td>4, (y)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(u, x, y, w, w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4, (y)</td>
</tr>
<tr>
<td>5</td>
<td>(u, x, y, w, w, z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph Example](image)
Dijkstra’s algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

<table>
<thead>
<tr>
<th>destination</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>(u,v)</td>
</tr>
<tr>
<td>x</td>
<td>(u,x)</td>
</tr>
<tr>
<td>y</td>
<td>(u,x)</td>
</tr>
<tr>
<td>w</td>
<td>(u,x)</td>
</tr>
<tr>
<td>z</td>
<td>(u,x)</td>
</tr>
</tbody>
</table>

Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes
- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)

Oscillations possible:
- e.g., link cost = amount of carried traffic
Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)
- Define
 \[d_x(y) := \text{cost of least-cost path from } x \text{ to } y \]
- Then
 \[d_x(y) = \min \{ c(x,v) + d_y(v) \} \]

where \(\min \) is taken over all neighbors \(v \) of \(x \)

Bellman-Ford example

Clearly, \(d_v(z) = 5 \), \(d_x(z) = 3 \), \(d_w(z) = 3 \)

B-F equation says:

\[d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \]
\[c(u,x) + d_{x}(z), \]
\[c(u,w) + d_{w}(z) \} \]

\[= \min \{ 2 + 5, \]
\[1 + 3, \]
\[5 + 3 \} = 4 \]

Node that achieves minimum is next hop in shortest path ➔ forwarding table
Distance Vector Algorithm

- \(D_x(y) \) = estimate of least cost from \(x \) to \(y \)
- Distance vector: \(D_x = [D_x(y): y \in N] \)
- Node \(x \) knows cost to each neighbor \(v \): \(c(x,v) \)
- Node \(x \) maintains \(D_x = [D_x(y): y \in N] \)
- Node \(x \) also maintains its neighbors’ distance vectors
 - For each neighbor \(v \), \(x \) maintains \(D_v = [D_v(y): y \in N] \)

Basic idea:

- Each node periodically sends its own distance vector estimate to neighbors
- When a node \(x \) receives new DV estimate from neighbor, it updates its own DV using B-F equation:
 \[
 D_x(y) \leftarrow \min_v(c(x,v) + D_v(y)) \quad \text{for each node } y \in N
 \]
- Under minor, natural conditions, the estimate \(D_x(y) \) converge to the actual least cost \(d_{x,y} \)

Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:
- local link cost change
- DV update message from neighbor

Distributed:
- each node notifies neighbors *only* when its DV changes
 - neighbors then notify their neighbors if necessary

Each node:

- **wait** for (change in local link cost of msg from neighbor)
- **recompute** estimates
- if DV to any dest has changed, **notify** neighbors
Distance Vector: link cost changes

Link cost changes:
- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

“Good news travels fast”
- At time t_1, y detects the link-cost change, updates its DV, and informs its neighbors.

- At time t_2, z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbors its DV.

- At time t_3, y receives z’s update and updates its distance table. y’s least costs do not change and hence y does not send any message to z.

Distance Vector: link cost changes

Link cost changes:
- good news travels fast
- bad news travels slow - “count to infinity” problem!
- 44 iterations before algorithm stabilizes

Poissoned reverse:
- If Z routes through Y to get to X:
 - Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z)
- will this completely solve count to infinity problem?
Distance Vector: example

Distance Vector (DV) algorithm:

- **node x table**
- **node y table**
- **node z table**

```
node x table

<table>
<thead>
<tr>
<th>cost to</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>z</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

node y table

<table>
<thead>
<tr>
<th>cost to</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>z</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

node z table

<table>
<thead>
<tr>
<th>cost to</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>z</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
```

D(x)(y) = min{c(x,y) + **D**(y)(y), c(x,z) + **D**(z)(y)} = min{2+0 , 7+1} = 2

D(x)(z) = min{c(x,y) + **D**(y)(z), c(x,z) + **D**(z)(z)} = min{2+1 , 7+0} = 3

Comparison of LS and DV algorithms

Message complexity
- **LS:** with n nodes, E links, O(nE) msgs sent
- **DV:** exchange between neighbors only
 - convergence time varies

Speed of Convergence
- **LS:** O(n^2) algorithm requires O(nE) msgs
 - may have oscillations
- **DV:** convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:
- node can advertise incorrect link cost
- each node computes only its own table

DV:
- DV node can advertise incorrect path cost
- each node’s table used by others
 - error propagate thru network

Stan Kurkovsky
Hierarchical Routing

Our routing study thus far - idealization

- all routers identical; network “flat” → ... not true in practice

scale: with 200 million destinations:
- can’t store all dest’s in routing tables!
- routing table exchange would swamp links!

administrative autonomy
- internet = network of networks
- each network admin may want to control routing in its own network

- aggregate routers into regions, “autonomous systems” (AS)
- routers in same AS run same routing protocol
 - “intra-AS” routing protocol
 - routers in different AS can run different intra-AS routing protocol

Gateway router
- Direct link to router in another AS

Interconnected ASes

- Forwarding table is configured by both intra- and inter-AS routing algorithm
 - Intra-AS sets entries for internal dests
 - Inter-AS & Intra-As sets entries for external dests
Inter-AS tasks

- Suppose router in AS1 receives datagram for which dest is outside of AS1
 - Router should forward packet towards one of the gateway routers, but which one?

AS1 needs:
1. to learn which dests are reachable through AS2 and which through AS3
2. to propagate this reachability info to all routers in AS1

Job of inter-AS routing!