Connectionless Transport: UDP

UDP: User Datagram Protocol [RFC 768]

- "no frills," "bare bones" Internet transport protocol
- "best effort" service, UDP segments may be:
 - lost
 - delivered out of order to app
- **connectionless:**
 - no handshaking between UDP sender, receiver
 - each UDP segment handled independently of others

Why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small segment header
- no congestion control: UDP can blast away as fast as desired
UDP

- often used for streaming multimedia apps
 - loss tolerant
 - rate sensitive
- other UDP uses
 - DNS
 - SNMP
- reliable transfer over UDP: add reliability at application layer
 - application-specific error recovery!

UDP segment format

<table>
<thead>
<tr>
<th>source port #</th>
<th>dest port #</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>checksum</td>
</tr>
</tbody>
</table>

UDP checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted segment

Sender:
- treat segment contents as sequence of 16-bit integers
- checksum: addition (1’s complement sum) of segment contents
- sender puts checksum value into UDP checksum field

Receiver:
- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO - error detected
 - YES - no error detected. *But maybe errors nonetheless?*
Internet Checksum Example

- Note: When adding numbers, a carryout from the most significant bit needs to be added to the result.
- Example: add two 16-bit integers:

```
  1 1 1 0 0 1 1 0 0 1 1 0
  1 1 0 1 0 1 0 1 0 1 0 1

  wraparound 1 0 1 1 1 0 1 1 1 0 1 1
  sum          1 0 1 1 1 0 1 1 1 1 0 0
  checksum     0 1 0 0 0 1 0 0 0 1 0 1
```

Stan Kurkavsky