Computer Networks

Delay, Loss and Throughput

Layered architectures

Based on Computer Networking, 4th Edition by Kurose and Ross

How do loss and delay occur?

- packets queue in router buffers
- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn

[Image of network diagram showing packet being transmitted (delay) and packets queueing (delay).]
Four sources of packet delay

1. **Processing delay**
 - check bit errors
 - determine output link
 - \(\sim 1 \times 10^{-6} \) sec

2. **Queueing**
 - time waiting at output link for transmission
 - depends on congestion level of router

3. **Transmission delay**
 - \(R \)= link bandwidth (bps)
 - \(L \)= packet length (bits)
 - time to send bits into link = \(L/R \)
 - \(\sim 1 \times 10^{-6} \) to \(1 \times 10^{-3} \) sec

4. **Propagation delay**
 - \(d \)= length of physical link
 - \(s \)= propagation speed in medium \(\sim 2.3 \times 10^8 \) m/sec
 - propagation delay = \(d/s \)
 - Note: \(s \) and \(R \) are **very** different quantities!

Caravan analogy

- Cars “propagate” at 100 km/hr
- Toll booth takes 12 sec to service a car (transmission time)
- Car \(\sim \) bit; caravan \(\sim \) packet
- Q: How long until caravan is lined up before 2nd toll booth?
- Time to “push” entire caravan through toll booth onto highway = \(12 \times 10 = 120 \) sec
- Time for last car to propagate from 1st to 2nd toll both: \(100 \text{km}/(100 \text{km/hr}) = 1 \text{ hr} \)
- A: 62 minutes

- Cars now “propagate” at 1000 km/hr
- Toll booth now takes 1 min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?
- A: Yes! After 7 min, 1st car at 2nd booth and 3 cars still at 1st booth.
- 1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router!
- See animation
Nodal delay

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

- \(d_{\text{proc}}\) = processing delay
 - typically a few microseconds or less
- \(d_{\text{queue}}\) = queuing delay
 - depends on congestion
- \(d_{\text{trans}}\) = transmission delay
 - \(= L/R\), significant for low-speed links
- \(d_{\text{prop}}\) = propagation delay
 - a few microseconds to hundreds of milliseconds

Queueing delay (revisited)

- \(R\)=link bandwidth (bps)
- \(L\)=packet length (bits)
- \(a\)=average packet arrival rate

- **traffic intensity** = \(La/R\)

- \(La/R \sim 0\): average queueing delay small
- \(La/R \rightarrow 1\): delays become large
- \(La/R > 1\): more “work” arriving than can be serviced, average delay infinite!
"Real" Internet delays and routes

- What do "real" Internet delay & loss look like?

- **Traceroute program:** provides delay measurement from source to router along end-end Internet path towards destination.

 - For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.

Traceroute www.oxford.ac.uk
(from a home computer with SBCGlobal ADSL service)

Tracing route to www.oxford.ac.uk [163.1.0.90] over a maximum of 30 hops:

1 2 ms 2 ms 2 ms bras7-10.mrdncit.sbcglobal.net [204.60.4.43]
2 16 ms 17 ms 17 ms bras7-21.mrdncit.sbcglobal.net [66.159.184.227]
3 15 ms 15 ms 14 ms dist2-1-vlan60.mrdncit.sbcglobal.net [66.159.184.227]
4 14 ms 15 ms 14 ms brs-ql-0-1.mrdncit.sbcglobal.net [204.60.203.113]
5 17 ms 17 ms 17 ms brs-p4-0.nyce.sbcglobal.net [151.164.42.99]
6 17 ms 17 ms 17 ms core1-p4-0.crnyny.sbcglobal.net [151.164.240.34]
7 17 ms 17 ms 18 ms core2-p1-0.crnyny.sbcglobal.net [151.164.188.82]
8 22 ms 23 ms 23 ms core2-p3-0.crnyny.sbcglobal.net [151.164.188.198]
9 23 ms 23 ms 23 ms core1-p8-0.crnyny.sbcglobal.net [151.164.188.21]
10 23 ms 22 ms 23 ms brs-p4-1.hrndva.sbcglobal.net [151.164.242.70]
11 23 ms 23 ms 22 ms exs1-p5-0.eqabva.sbcglobal.net [151.164.191.134]
12 25 ms 24 ms 23 ms ash-brs-geth6-3-6-13.telia.net [213.248.88.17]
13 29 ms 30 ms 29 ms nyk-brs-pos7-1-0.telia.net [213.248.80.70]
14 123 ms 96 ms 99 ms ldn-bb2-pos7-1-0.telia.net [213.248.65.93]
15 98 ms 98 ms 98 ms ldn-b3-pos9-0.telia.net [213.248.64.50]
16 99 ms 98 ms 99 ms jnt-110793-ldn-b3.c.telia.net [213.248.100.238]
17 97 ms 99 ms 98 ms po0-1.lond-scr.ja.net [146.97.35.133]
18 107 ms 109 ms 106 ms po0-0.read-scr.ja.net [146.97.33.26]
19 107 ms 109 ms 107 ms po2-0.read-bar2.ja.net [146.97.35.106]
20 109 ms 110 ms 108 ms po2-0.oxford-bar.ja.net [193.63.108.74]
21 110 ms 108 ms 109 ms 146.97.40.82
22 109 ms 108 ms 113 ms www.oxford.ox.ac.uk [163.1.0.90]

Trace complete.
Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- when packet arrives to full queue, packet is dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all

Throughput

- **throughput**: rate (bits/time unit) at which bits transferred between sender/receiver
 - **instantaneous**: rate at given point in time
 - **average**: rate over long(er) period of time
Throughput (more)

- $R_s < R_c$ What is average end-end throughput?

- $R_s > R_c$ What is average end-end throughput?

- **Bottleneck link**: link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- per-connection end-end throughput: $\min(R_c, R_s, R/10)$
- in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec
Protocol “Layers”

Networks are complex!
- many “pieces”:
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

- **Question:** Is there any hope of organizing structure of network?
 - Or at least our discussion of networks?

Organization of air travel

- a series of steps

```
Ticket (purchase)  Ticket (complain)
Baggage (check)    Baggage (claim)
Gates (load)       Gates (unload)
Runway takeoff     Runway landing
Airplane routing   Airplane routing
```

Stan Kurkovsky
Layering of airline functionality

- **Layers**: each layer implements a service
 - via its own internal-layer actions
 - relying on services provided by layer below

Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system’s pieces
 - layered *reference model* for discussion

- modularization eases maintenance, updating of system
 - change of implementation of layer’s service transparent to rest of system
 - e.g., change in gate procedure doesn’t affect rest of system

- Service model: each layer provides a service by
 - Performing actions within that layer
 - Using the services of the layer directly below
Internet protocol stack

- **application**: supporting network applications
 - FTP, SMTP, HTTP
- **transport**: host-host data transfer
 - TCP, UDP
- **network**: routing of datagrams from source to destination
 - IP (defines structure of datagrams), routing protocols
- **link**: data transfer between neighboring network elements
 - PPP, Ethernet
- **physical**: bits “on the wire”

ISO/OSI reference model

- **presentation**: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- **session**: synchronization, checkpointing, recovery of data exchange
- Internet stack “missing” these layers!
 - these services, *if needed*, must be implemented in application
 - needed?

Stan Kurkovsky
Encapsulation

- **message**
- **segment**
- **datagram**
- **frame**

source
- application
- transport
- network
- link
- physical

destination
- application
- transport
- network
- link
- physical

Network Security

- attacks on Internet infrastructure:
 - infecting/attacking hosts: malware, spyware, worms, unauthorized access (data stealing, user accounts)
 - denial of service: deny access to resources (servers, link bandwidth)
- Internet not originally designed with (much) security in mind
 - original vision: “a group of mutually trusting users attached to a transparent network”
 - Internet protocol designers playing “catch-up”
- Security considerations in all layers!
What can bad guys do: malware?

- **Spyware:**
 - infection by downloading web page with spyware
 - records keystrokes, web sites visited, upload info to collection site

- **Virus**
 - infection by receiving object (e.g., e-mail attachment), actively executing
 - self-replicating: propagate itself to other hosts, users

- **Worm:**
 - infection by passively receiving object that gets itself executed
 - self-replicating: propagates to other hosts, users

Denial of service attacks

- attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

1. select target
2. break into hosts around the network (see malware)
3. target from compromised hosts
Packet sniffing:
- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by
- IP spoofing: send packet with false source address
- record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

A

| src:B | dest:A | user: B; password: foo |

B