Part I: Web Structure Mining
Chapter 2: Hyperlink Based Ranking

• Social Network Analysis
• PageRank
• Authorities and Hubs
• Link Based Similarity Search
• Enhanced Techniques for Page Ranking
Social Networks

- Directed graph with weights assigned to the edges
- Nodes represent documents and edges — citations from one document to other documents.
- *Prestige* can be associated with the number of input edges to a node (in-degree).
- Prestige has a *recursive* nature — it depends on the authority (or again, the prestige) of citations.
Prestige Score

• Adjacency matrix A

\[
A(u, v) = 1 \quad \text{if document } u \text{ cites document } v
\]
\[
A(u, v) = 0 \quad \text{otherwise}
\]

• Prestige score

\[
p(u) = \sum_v A(v, u) \cdot p(v)
\]
Computing Prestige Score

• Solving matrix equation

\[P' = A^T P \]

• Eigen decomposition

\[\lambda P = A^T P \]

Eigenvalue \(\lambda \)

Eigenvector \(P \)
Social Networks Example

\[
A = \begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\quad
A^T = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}
\]

\[
\lambda P = A^T P
\]

\[
\lambda = 1.325
\]

\[
P = \begin{pmatrix}
0.548 \\
0.414 \\
0.726
\end{pmatrix}^T
\]

Slides for Chapter 1: Information Retrieval an Web Search
Computing Prestige by Power Iteration

- $P \leftarrow P_0$
- **Loop:**
 - $Q \leftarrow P$
 - $P \leftarrow A^T Q$
 - $P \leftarrow \frac{1}{\|P\|} P$
- **While** $\|P - Q\| > \varepsilon$
PageRank

• “Random web surfer” keeps clicking on hyperlinks at random with uniform probability
• Implements random walk on the web graph
• If page u links to N_u web pages and v is one of them then:
 – Once the surfer is at page u the probability of visiting page v will be $1/N_u$
 – The amount of prestige that page v receives from page u is $1/N_u$ of the prestige of u
Page Rank Propagation

Propagation of page rank $R(u)$

\[
R(u) = \lambda \sum_v \frac{A(v, u)R(v)}{N_v}
\]

\[
N_v = \sum_w A(v, w)
\]

Slides for Chapter 1: Information Retrieval an Web Search
Calculation of PageRank

\[A = \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \]

\[\lambda P = A^T P \]

with norm \[\|X\|_1 = x_1 + x_2 + \ldots + x_n \]

\[P^T = \begin{pmatrix} 0.666 & 0.333 & 0.666 \end{pmatrix} \]

with norm \[\|X\|_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \]

\[P^T = \begin{pmatrix} 2 & 1 & 2 \end{pmatrix} \] in integers
Rank Sink and Power Iteration

\[R(u) = \lambda \left(\sum_{v} \frac{A(v,u)R(v)}{N_v} + E(u) \right) \]

\[R \leftarrow R_0 \]
\[Q \leftarrow R \]

Loop:
\[R \leftarrow A^T Q \]
\[d \leftarrow \|Q\|_1 - \|R\|_1 \]
\[R \leftarrow R + dE \]

While \(\|R - Q\|_1 > \varepsilon \)

Slides for Chapter 1: Information Retrieval and Web Search
PageRank Discussion

- The rank vector R defines the probability distribution of a random walk on the Web graph.
- With some low probability the surfer jumps to a random page chosen according to distribution E.
- E is usually chosen as a uniform vector with a small norm.
- If the norm of E is larger the surfer jumps to a random page more often.
- A larger norm of E means less contribution of the link structure to the final PageRank score (the distribution of R gets closer to E).
- The rank source E allows PageRank to be adjusted for customized ranking or to avoid commercial manipulation.
- Other PageRank applications include estimating Web traffic, optimal crawling and web page navigation.
Authorities and Hubs

- There are problems with using only the in-degree based authority (e.g. some links have noting to do with authority).
- Neither content-based relevance nor link-based authority can do the job alone, rather a good balance between the two is needed.
- Hyperlink Induced Topic Search (HITS) combines content-based relevance with link-based authority ranking.
- Focuses on relevant pages first and then computes authority.
- Works with much smaller and query dependent part of the Web graph.
- Takes into account hub pages (pages that point to multiple relevant authoritative pages).
Hyperlink Induced Topic Search (HITS)

• Given a query q a standard IR system finds a small set of relevant web pages called a root set R_q.

• The root set is expanded to a base set S_q by adding pages that point to and are pointed to by pages from the root set.

• The hyperlink structure of the base set is analyzed to find authorities and hubs.
Finding Authorities and Hubs

\[E(u,v) \] – adjacency matrix of the base set \(S_q \)
\[X = (x_1 \ x_2 \ ... \ x_n) \] – authority vector
\[Y = (y_1 \ y_2 \ ... \ y_n) \] – hub vector
\(k \) – tuned parameter

- \(X \leftarrow (11\ldots1) \)
- \(Y \leftarrow (11\ldots1) \)
- Loop \(k \) times
 - \(x_u \leftarrow \sum_{\{v,E(v,u)=1\}} y_v \), for \(u = 1, 2, \ldots, n \)
 - \(y_u \leftarrow \sum_{\{v,E(u,v)=1\}} x_v \), for \(u = 1, 2, \ldots, n \)
 - normalize \(X \) and \(Y \) by the \(L_2 \) norm
- End loop

Authority score \(x_i = a(u_i) \)
Hub score \(y_i = h(u_i) \)
\[h(u_1) = a(v_1) + a(v_2) + a(v_3) \]

Slides for Chapter 1: Information Retrieval and Web Search
Link-Based Similarity Search

• Find k pages pointing to page u and use them to form the root set R_u

• Using R_u find the base set S_u

• Compute authorities and hubs in S_u

• Report the highest ranking authorities and hubs as similar pages to u.
Enhanced Page Ranking

- **Topic Generalization** (expansion of a set of pages by a number of links)
 - Expansion by one link is used by HITS
 - Expansion by more than one link usually leads to *topic drift*
- **Nepotistic links** (densely linked pages located on a single site or related sites)
 - Assign weights of to inlinks from pages belonging to a single site
- **Outliers** (relevant pages retrieved by keyword search, but far from the central topic of the query)
- Eliminating outliers by *clustering*
 - Create vector space representation for the pages from the root set.
 - Find the *centroid* of the root set (the page that minimizes its cosine similarity to all pages in the set)
 - When expanding the root set discard pages that are too far from the centroid page.

Slides for Chapter 1: Information Retrieval and Web Search