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Overview 

 

Bayesian (also called Belief) Networks (BN) are a powerful knowledge representation 

and reasoning mechanism. BN represent events and causal relationships between them as 

conditional probabilities involving random variables. Given the values of a subset of 

these variables (evidence variables) BN can compute the probabilities of another subset 

of variables (query variables). BN can be created automatically (learnt) by using 

statistical data (examples). The well-known Machine Learning algorithm, Naïve Bayes is 

actually a special case of a Bayesian Network. 

 

The project allows students to experiment with and use the Naïve Bayes algorithm and 

Bayesian Networks to solve practical problems. This includes collecting data from real 

domains (e.g. web pages), converting these data into proper format so that conditional 

probabilities can be computed, and using Bayesian Networks and the Naïve Bayes 

algorithm for computing probabilities and solving classification tasks. 

Objectives 

The aim of this project is to expose students to two important reasoning and learning 

algorithms – Naïve Bayes and Bayesian Networks, and to explore their relationship in the 

context of solving practical classification problems. In particular, the objectives of the 

project are:  

• Learning the basics of Bayesian approach to Machine Learning and the Bayesian 

Networks approach to Probabilistic Reasoning in AI. 

• Gaining experience in using recent software applications in these areas for solving 

practical problems. 

• Better understanding of fundamental concepts of Bayesian Learning and 

Probabilistic Reasoning and their relationship in the more general context of 

knowledge representation and reasoning mechanisms in AI. 

Project Description 
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Similarly to the Web document classification project 

(http://uhaweb.hartford.edu/compsci/ccli/wdc.htm) this project also has three main steps: 

Data collection, Data preparation, and Machine Learning. The first two steps of the two 

projects are basically the same. In fact, documents and data sets in Weka’s ARFF format 

prepared for the former project can also be used for the Bayesian reasoning project. 

Hereafter we shall describe these steps again, because there are some differences in the 

software tools used which make the first two steps of the current project more 

straightforward. The basic difference is in the third step, which includes Bayesian 

classification with experiments with Bayesian networks. 

 

Data Collection 

 

Generally the data collection step in Machine Learning involves gathering cases, 

examples, or instances of objects from different types or categories (classes), so that at 

the ML step a model of these data is created that can be later used to identify groups or 

similarities in data (in unsupervised learning) or predict the class of new objects (in 

supervised learning). Although any other objects may be used for the purposes of this 

project we suggest that web or text documents are collected. The area of text/web 

document classification has been used in other ML projects and students who have 

worked on these projects have already gained some experience in this area. Results from 

other projects may be compared to the results from Bayesian learning which would show 

the advantages and drawbacks of different algorithms applied to the same data. And last 

but not least, text documents can be easily collected from the Web along with their class 

labels (topics or user preferences). This issue was discussed in detail in other two ML 

projects related to the Web - Web document classification 

(http://uhaweb.hartford.edu/compsci/ccli/wdc.htm) and Web user profiling 

(http://uhaweb.hartford.edu/compsci/ccli/wup.htm). 

 

To illustrate the process of data collection we use a small part of the Web, a set of pages 

describing the departments in the school of Arts and Sciences at CCSU. Each of these 

pages is a short textual description of the department. Figure 1 shows a directory page 

that includes links to the department pages. One of the department pages is shown in 

Figure 2. 

 

As we are going to classify these and also new documents into categories at this point we 

have to determine a class label for each department page. These labels can be given 

independently from the document content however as the classification will be based on 

the document content some semantic mapping between content and class should be 

established. For this purpose we can roughly split the departments into two groups – 

sciences (class label A) and humanities (class label B).  Table 1 shows these two groups 

(the department names are abbreviated). 

 

Documents Class (A – sciences, B – humanities) 

Anthropology, Biology, Chemistry, Computer, 

Economics, Geography, Math, Physics, 

A 



Political, Psychology, Sociology 

Justice, Languages, Music, Philosophy, 

Communication, English, Art, History, Theatre 

B 

 

Table 1. Documents groped by classes 

 

 
Figure 1. A directory page for a collection of web documents. 

 



 
Figure 2. A sample web document 

Finally, the web documents are converted into plain text files. The idea is to take off the 

HTML tags and leave the text only (although the HTML structure can carry some 

semantics associated with the document class we ignore it to simplify the processing and 

document representation). The conversion to text can be done is various ways manually 

or using some tools. For small number of documents we suggest using the Internet 

Explorer, which allows the currently loaded HTML document to be saved with the “Save 

As…” option with “Save as type: Text File (*.txt)”.  

 

The deliverable for the data collection step is a set of plain text files grouped into 

categories. As an illustration we suggest that students look into the collection of text files 

describing the A&S departments available from the data repository at 

http://www.cs.ccsu.edu/~markov/dmwdata.zip, folder “CCSU departments”. 

Data Preparation 

 

Now we are going to convert the text documents into data sets in Weka’s ARFF format to 

be later used in the Machine Learning phase. With this conversion we will actually 

illustrate the basic concepts of the Vector Space document model that plays an 

important role in Information Retrieval and Web Search. We suggest that students read 

Chapter 1 of book [2] (available for free download from Wiley) before continuing with 

the steps described below: 

 

1. Download and install the Weka data mining system (version Weka 3.4) 

(http://www.cs.waikato.ac.nz/~ml/weka/). Read the documentation and try some 



examples to familiarize yourself with its use (e.g. load and explore the weather data, 

provided with the installation). 

 

2. Create a string data file in ARFF format (see the description of the ARFF format 

at http://www.cs.waikato.ac.nz/~ml/weka/arff.html). Follow the directions below: 

 

First create a concatenation of all text documents (text corpus) obtained from the 

data collection step and save them in a single text file, where each document is 

represented on a separate line in plain text format. For example, this can be done by 

loading all text files in MS Word and then saving the file in plain text format without 

line breaks. Other editors may be used for this purpose too. Students with 

programming experience may want to write a program to automate this step. 

 

Once the file with the text corpus is created enclose each line in it (an individual 

document content) in quotation marks (“) and add the document name in the 

beginning of the line and the document class at the end, all separated by commas. 

Also add a file header in the beginning of the file followed by @data as shown 

below: 

 

@relation departments_string 

 

@attribute document_name string 

@attribute document_content string 

@attribute document_class string 

 

@data 

 

Anthropology, " anthropology anthropology anthropology consists …”, A 

… 

 

This representation uses three attributes – document_name, document_content, and 

document_class, all of type string. Each row in the data section (after @data) 

represents one of the initial text documents. Note that the number of attributes and the 

order in which they are listed in the header should correspond to the comma separated 

items in the data section. An example of such string data file is “Departments-

string.arff”, available from the data repository at 

http://www.cs.ccsu.edu/~markov/dmwdata.zip, folder “Weka data”. 

 

3. Create Term counts, Boolean, and TFIDF data sets. Load the string data file in 

Weka using the “Open file” button in “Preprocess” mode. After successful loading 

the system shows some statistics about the number of attributes (3) their type (string) 

and the number of instances (rows in the data section or documents). 

 

Choose the StringToNominal filter and apply it (one at a time) to the first attribute, 

document_name and then to the last attribute (index 3), document_class. Then choose 

the StringToWordVector filter and apply it with outputWordCounts=true. You may 



also change the setting of onlyAlphabeticTokens and useStoplist to see how the 

results change. As Weka moves the class attribute at the second place, move it back 

last by using the Copy filter and the Remove button. The result of all these steps is a 

Weka data set that uses a term count representation for the documents. An example of 

this data set is the file “Departments-counts.arff”, available from the data repository 

at http://www.cs.ccsu.edu/~markov/dmwdata.zip, folder “Weka data”. 

 

Now we have a document-term matrix loaded in Weka. Press the “Edit” button to 

see it in a tabular format, where you can also change its content or copy it to other 

applications (e.g. MS Excel). Once created in Weka the table can be stored in an 

ARFF file through the “Save” option. Below is a screenshot of a part of the 

document-term table for the CCSU A@S departments. 

 

 

 
 

 

Weka can also show some interesting statistics about the attributes. The class 

distribution over the values of each attribute (including the document name) is shown 

at the bottom of the Selected attribute area. With Visualize All we can see the class 

distribution in all attributes. If we change the class to document_name we can see the 

distribution of terms over documents as bar diagrams. The screenshot below shows 

some of these diagrams. 

 



 
 

Examine the diagrams (the color indicates the document) and find the most specific 

terms for each document. For example, compare the diagrams of “anthropology” and 

“chair” and explain the difference. Which one is more representative and for which 

document? 

 

Similarly we can create the boolean and TFIDF representation of the document 

collection. Examples of these representations are provided in the files Departments-

binary.arff and Departments-TFIDF.arff, available from the data repository at 

http://www.cs.ccsu.edu/~markov/dmwdata.zip, folder “Weka data”. Read the 

comment in the beginning of each file that explains the steps taken to create it. 

 

To obtain the boolean representation apply the NumericToBinary filter to the term 

count representation. See what changes in the diagrams. For the TFIDF 

representation, use the original string representation and apply the 

StringToWordVector filter with IDFTransform=true. Examine the document-term 

table and the bar diagrams and explain why some columns (e.g. “chair” and 

“website”) are filled with only zeros.  

 

The deliverable for the data preparation step is the three data files – Boolean, Term 

count, and TFIDF, as well as some statistics (tables and diagrams) and analysis of the 

attributes and class distributions (see the questions above). 

 

Bayesian Classification and Reasoning 

 



At this step we use Naïve Bayes and Bayesian networks for text document classification 

and further look into the underlying mechanisms of Bayesian reasoning. However before 

applying these algorithms we have to reduce the number of attributes in our data sets 

through feature selection. This will have two positive effects to our experiments. Firstly, 

it will improve the classification accuracy and secondly, it will simplify and make 

possible the visual inspection and evaluation of the Bayesian network model, which 

otherwise would involve thousands of variables. 

Feature selection  

 

In the area of text document classification the number of attributes is usually much higher 

than the number of documents. This poses a problem for many learning algorithms, 

further aggravated by the presence of too many 0’s in the document-term matrix. An 

obvious solution to this problem is to select a subset of words (terms) that best represent 

the document collection with respect to the classification task. This process is generally 

called feature (attribute) selection and is aimed at removing the irrelevant to the 

classification task attributes. There is an interesting experiment that we discuss hereafter. 

It investigates the relationship between the number of attributes, their relevance and the 

accuracy of classification.  

 

Attributes may be ranked by relevance using various algorithms. Weka provides a good 

number of algorithms for this purpose available through the Attribute Selection filter (the 

same algorithms can be used in Select attribute mode). We are not going into the details 

of these algorithms, but interested students may read Section “Feature Selection” in 

Chapter 5 of book [2]. To illustrate this process let’s apply InfoGainAttributeEval to our 

Boolean data set, Departments-binary.arff. Weka now shows the attributes in a different 

order, starting with document_name, research, science etc. Note that document_name 

appears to be the most relevant attribute, which is obvious as it distinguishes uniquely 

every single document. However this attribute cannot be used to classify new documents 

as they will have different names (or IDs). That is why in most cases when it comes to 

generating a classification model we remove the ID attribute. Now, after doing so let us 

look at the document-term table (press on Edit button in Preprocess). There is an obvious 

difference with the same table showing the attributes in alphabetical order – the number 

of 0’s in the leftmost columns is far less. It’s interesting to look at the rightmost columns 

too – there are columns with all 1’s (e.g. chair, phone, website) and such with almost all 

0’s. These are obviously irrelevant attributes (explain why). 

 

The next step is to run the Naïve Bayes algorithm on the current data (with ordered 

attributes). We will repeat this with different number of attributes selected from the 

beginning of the list. Let’s try 1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 400, 500, 600 and 

then record the classification accuracy with 10-fold cross validation (the default test 

option). Note that we don’t count the class attribute, which is actually used in the process 

of attribute ranking. The results from this experiment are shown in the graph below (the 

markers on the curves indicate the data points 1, 2, 3, 5 etc.). 
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With one attribute (research) the algorithm performs relatively well (85% accuracy) and 

with 2 and 3 it achieves 100% accuracy. Adding more attributes generally decreases the 

accuracy as they become less relevant. We also see some fluctuations especially at the 

right end of the curve, which may be a result of inconsistency between the attribute 

selection method and the attribute relevance with respect to the Naïve Bayes 

classification method. The effect of adding irrelevant attribute can be explained generally 

with the fact that an important assumption for using the Naïve Bayes algorithm is 

violated. It is that all attributes should have the same relevance with respect to the 

classification task. The reason for making this assumption can be found in the way Naïve 

Bayes computes the class likelihoods – they are simply products of the conditional 

probabilities of all attribute values given the class value. 

 

The results of the above series of experiment show some optimal intervals for the number 

of attributes needed to achieve maximum accuracy. These are [2, 3] and [20, 30]. 

Generally these results depend on two factors – the choice of data representation and the 

attribute selection method used. As a deliverable for this step we suggest that students 

create similar graphs with the other two data sets – Term counts and TFIDF, and also use 

different attribute selection algorithms to see how these two factors affects the 

performance of Naïve Bayes and consequently determine the optimal number (and the 

actual subset) of attributes. The Subset evaluator may also be used to see how Weka will 

find the optimal subset of attributes with different data sets. 

Bayesian learning and classification 

 

At this step we use the data set with 5 attributes with which Naïve Bayes achieved 90% 

accuracy in the experiments described in the previous section. First we look closely into 

the classification model built by Naïve Bayes and then investigate how the Bayesian 

network extends it and thus improves the classification accuracy. 



 

Running Naïve Bayes with 10-fold cross validation produces the following output (some 

parts of it are skipped for brevity): 

 
=== Run information === 

 

Scheme:       weka.classifiers.bayes.NaiveBayes  

Instances:    20 

Attributes:   6 

              research 

              science 

              concentrations 

              ba 

              social 

              document_class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

Class A: Prior probability = 0.55 

 

research:  Discrete Estimator. Counts =  4 9  (Total = 13) 

science:  Discrete Estimator. Counts =  5 8  (Total = 13) 

concentrations:  Discrete Estimator. Counts =  8 5  (Total = 13) 

ba:  Discrete Estimator. Counts =  5 8  (Total = 13) 

social:  Discrete Estimator. Counts =  8 5  (Total = 13) 

 

Class B: Prior probability = 0.45 

 

research:  Discrete Estimator. Counts =  10 1  (Total = 11) 

science:  Discrete Estimator. Counts =  10 1  (Total = 11) 

concentrations:  Discrete Estimator. Counts =  10 1  (Total = 11) 

ba:  Discrete Estimator. Counts =  1 10  (Total = 11) 

social:  Discrete Estimator. Counts =  10 1  (Total = 11) 

 

=== Stratified cross-validation === 

 

Correctly Classified Instances          18               90      % 

 

=== Confusion Matrix === 

 

 a b   <-- classified as 

 9 2 | a = A 

 0 9 | b = B 

 

Looking at this output two important observations can be made. First, all attributes have 

only one of its values occurring in class B. This is indicated by the fact that one of the 

counts is always 1, which means that the actual count is 0 (according to the Laplace 

estimator used by the algorithm the actual value count is incremented by 1). Second, the 

confusion matrix indicates that all documents from actual class B are always classified as 

B, while two documents from class A are wrongly classified as B. Obviously the second 

observation is a result of the first one (explain why). A look at the class distribution over 

the attribute values produced by the Visualize All option in Preprocess mode (see below) 

confirms this conclusion. 



 

 
 

For example, all documents with research=1 (the right bar) fall in class A (blue color), 

which means that no documents with research=1 fall in class B. Consequently the 

conditional probability P(research=1|B) = 0. In fact, the Laplace estimator is used to 

avoid zero probabilities like this, because they make the whole product zero and thus 

ignore the contribution of other attributes. At the same time however the conditional 

probability P(research=0|B) will be almost 1 (not exactly 1 because of the Laplace 

correction). Thus a document with research=0, science=0, concentration=0, ba=1, and 

social=0 will be clearly classified in class B, because the product 

P(research=0|B)P(science=0|B)P(concentration=0|B)P(ba=1|B)P(social=0|B) will be 

much higher that the corresponding product for class A. This can be seen in the Weka 

output if we look at the probability distribution in the predictions (after checking “Output 

predictions” in “More options…”): 

 
=== Predictions on test data === 

 

 inst#,    actual, predicted, error, probability distribution 

     1        1:A        1:A         *0.981  0.019 

     2        1:A        1:A         *0.66   0.34  

     1        1:A        1:A         *0.809  0.191 

     2        2:B        2:B          0.05  *0.95  

     1        1:A        1:A         *0.809  0.191 

     2        2:B        2:B          0.05  *0.95  

     1        1:A        1:A         *0.985  0.015 

     2        2:B        2:B          0.061 *0.939 



     1        1:A        2:B      +   0.451 *0.549 

     2        2:B        2:B          0.044 *0.956 

     1        1:A        2:B      +   0.35  *0.65  

     2        2:B        2:B          0.041 *0.959 

     1        1:A        1:A         *0.997  0.003 

     2        2:B        2:B          0.069 *0.931 

     1        1:A        1:A         *0.735  0.265 

     2        2:B        2:B          0.047 *0.953 

     1        1:A        1:A         *0.997  0.003 

     2        2:B        2:B          0.069 *0.931 

     1        1:A        1:A         *0.956  0.044 

     2        2:B        2:B          0.056 *0.944 

 

For all documents from actual class B, the class distribution decisively predicts class B. 

 

The predictions also show that the two errors (marked with +) happen in actual class A. If 

we want to know exactly which two documents are wrongly classified we may look at the 

visualization of the classifier errors (right click in the result list).  

 

  
 

 

Clicking on the two squares in the plot reveals these two documents: 

 



  
 

 

Now, let us apply the Bayesian network classifier to this data set. It’s available in group 

Bayes under the name BayesNet. Running it with the default parameter setting and 10-

fold cross validation produces 95% accuracy. Now let us look at the model available in 

text from the classifier output window. 

 
Network structure (nodes followed by parents) 

research(2): document_class  

science(2): document_class  

concentrations(2): document_class  

ba(2): document_class  

social(2): document_class  

document_class(2): 

 

The graphical representation of this model can be seen too through Visualize graph (right 

click in the result list). 

 

 
 



Note that this structure of the network makes this model equivalent to the Naïve Bayes 

classifier. That is, we have the class variable at the root with only prior probabilities and 

conditional probability tables at the leaves as shown below. 

 

 
 

 
 

So, why does this model achieve a slightly higher accuracy (95%)? The answer is in the 

way probabilities are estimated. The default setting (SimpleEstimator -- -A 0.5) defines 

an initial value for the frequency count as 0.5 (see the explanation provided by the More 

button). This is different from Laplace used by Naïve Bayes, where the initial count is set 

to 1. This estimator is also applied to the prior probability calculation of the document 

class (see the difference from the Naïve Bayes output, where P(A)=0.55 and P(B)=0.45). 

When we set alpha=1 and run BayesNet again – the accuracy is back 90%. In this case 

BayesNet works exactly the same as NaïveBayes. 

 

Other estimators may be also used. For example, with the BMAEstimator the accuracy 

drops to 85% (see the structure of the error shown by the confusion matrix) and with 

MultiNomialBMAEstimator it is even worse (55%). The later estimator actually assumes 

a different distribution and thus makes this algorithm equivalent to 

NaiveBayesMultinomial (NaiveBayes uses Normal or Discrete distribution). 

 

Let us now investigate how changes in the network structure may affect the classification 

results. With the default setting BayesNet creates a simple network structure equivalent 

to the one used by Naïve Bayes (all attributes are leaves and the class is their single 

parent). We may change this by dropping the restriction that nodes should have no more 

than one parent (maxNrOfParents=1). So, let us use maxNrOfParents=2. This will allow 

the BayesNet algorithm to create a more general network that may include dependency 

arcs between non-class variables. This is a conceptual difference between the Naïve 

Bayes and the Bayesian Network approaches. In fact, this violates the basic assumption 

used by Naïve Bayes that the attributes are statistically independent (this is the reason to 

call the algorithm “naïve” as this assumption is usually not present in real data). Running 

BayesNet with the new setting (still with the Laplace estimator, alpha=1) produces a 

slightly better accuracy of 95%. Let us take a look at the network structure obtained with 

this setting. 

 



 
 

We see now dependencies among the “independent” attributes. As a result some of these 

attributes have two parents and their conditional probability tables have four rows listing 

all possible combinations of the values of the parent variables. For example, the table for 

science is the following: 

 

 
 

The dependency arcs are created by using a Bayesian Network learning algorithm while 

classification is based on a simple Bayesian network inference, which computes the 

probability for each class value given the distribution represented by the Bayesian 

network (all variables except the class one are known). Details about this algorithm as 

well as a complete documentation for its use through Weka are available from [5]. We 

recommend that students read this article before or while running the experiments 

described in this section.  

 



The network structure learnt from data shows that the attributes are in fact dependent. 

The fact that we got an improvement in accuracy (given the same probability estimation 

method) means that the Baesian Network inference makes use of this dependency and 

thus outperforms Naïve Bayes on the classification task. The latter cannot handle 

dependent attributes and therefore needs the attribute independence assumption. 

 

The last step of using Weka in this experiment is for saving the Bayesian network models 

on files to that they can be used by another Bayesian Network tool.. For this purpose 

Weka supports the so called BIF (Bayesian Interchange Format) file format, a XML-

based format used to represent Bayesian Networks (see 

http://www.cs.cmu.edu/afs/cs/user/fgcozman/www/Research/InterchangeFormat/).  

 

Once a Bayesian model has been created it can be saved as a XML BIF file by using the 

Save Graph button in Weka’s Graph Visualizer. As a deliverable for this step we suggest 

that students create two files – one with the Naïve Bayes net (the simple structure with 

the class node as a parent of all attribute nodes, created with maxNrOfParents=1) and the 

other one with the more general Bayesian net with dependency arcs between independent 

attributes (created with maxNrOfParents=2). In addition the most general network can be 

created without using Niave Bayes as an initial network structure 

(initAsNaivebayes=false) and by allowing more than 2 parent nodes (say, 

maxNrOfParents=100). 

Bayesian Network reasoning 

 

In Weka we can learn Bayesian networks and use them for classification. At the 

classification step we are given an example (e.g. a document) with unknown class value. 

That is, we know the values of all variables (observations) except the class and the 

network inference mechanism computes the distribution at the class node (unobserved 

variable) thus determining the predicted class value of this example. It’s important to note 

that Bayesian networks also provide other types of inference which may be useful for 

classification as well as for other types of reasoning. To illustrate this we shall examine 

our networks created with Weka by using a more general Baysian Network tool. There 

are many such tools (see for example, a directory page at 

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html), but for the purposes of this project 

we recommend using JavaBayes. It’s a Bayesian Network package written in Java, 

available from http://www.cs.cmu.edu/~javabayes/. The reason we are using it is that it 

also supports the XML BIF format that we used to save our networks created with Weka. 

  

At this point students have to install JavaBayes and familiarize themselves with its use by 

running some simple examples (provided with the package). Then the files created with 

Weka have to be loaded in JavaBayes. Note that the XML BIF files from Weka have first 

to be manually edited to fix a small inconsistency in the file formats supported by the two 

packages. As the value identifier in JavaBayes should begin with a letter we have to 

replace the 0 and 1 in the Boolean data with, say v0 and v1. This can be easily done if we 

save the file from Weka in CSV format, replace the values in a text editor (e.g. Notepad) 



and load it back in Weka. Then run BayesNet and save the graph through the Graph 

Visualizer in XML BIF format. 

 

After successful loading of the first BIF file created with Weka we see the Bayesian 

graph in the JavaBayes editor window. By selecting the Observe tab and clicking on the 

nodes we can set observed values for some variables, while with choosing Query we can 

see the probability distribution of the values of any variable in the console window. 

Without entering any observations these probabilities are the estimated ones obtained 

from the training data. If an observation is set then the probabilities change to 1 for the 

observed value or 0 for all others.  

 

Several types of experiments can be performed with Bayesian Networks each illustrating 

a different type of reasoning. 

 

Classification 

 

Let us enter the observations for document number 8 (Economics) which was wrongly 

classified by Naïve Bayes with 10-fold cross validation. All leave nodes become blue and 

the console window shows the observations (evidence) as well the probability 

distribution of the class values.  

 

 
 
probability (  "research" ) { //1 variable(s) and 2 values 

 table  

  1.0 // p(v1 | evidence ) 

  0.0;  // p(v0 | evidence ); 

} 

Posterior distribution: 

probability (  "science" ) { //1 variable(s) and 2 values 

 table  

  0.0 // p(v1 | evidence ) 

  1.0;  // p(v0 | evidence ); 

} 

Posterior distribution: 

probability (  "concentrations" ) { //1 variable(s) and 2 values 

 table  

  0.0 // p(v1 | evidence ) 



  1.0;  // p(v0 | evidence ); 

} 

Posterior distribution: 

probability (  "ba" ) { //1 variable(s) and 2 values 

 table  

  1.0 // p(v1 | evidence ) 

  0.0;  // p(v0 | evidence ); 

} 

Posterior distribution: 

probability (  "social" ) { //1 variable(s) and 2 values 

 table  

  0.0 // p(v1 | evidence ) 

  1.0;  // p(v0 | evidence ); 

} 

Posterior distribution: 

probability (  "document_class" ) { //1 variable(s) and 2 values 

 table  

  0.5452999095512584 // p(A | evidence ) 

  0.4547000904487416;  // p(B | evidence ); 

 

As P(A | evidence) > P(B | evidence) we can predict class A for this document, which is 

its actual class too. Note that when it misclassified this document Naïve Bayes did not 

use the whole training set, but only 9/10 of it or 18 instances. While the above 

probabilities are computed with the whole training set and thus more accurately reflect 

the underlying distributions in data. 

 

Using partial evidence 

 

Another way of using the Bayesian network is by entering partial evidence. In this way 

we can investigate how the class probabilities are affected by using different attributes, 

and how much each attribute value is relevant to the classification of a particular 

instance. This can be done by setting the observation for one variable at a time and then 

checking the class probabilities. The following table shows the results of this experiment: 

 

 No 

evidence 

research=v1 science=v0 concentrations=v0 ba=v1 social=v0 

P(A|evidence) 0.545 0.901 0.337 0.448 0.448 0.448 

P(B|evidence) 0.455 0.099 0.663 0.552 0.552 0.552 

 

It is clear that research is the strongest attribute to support class A, all others actually 

misclassify instance number 8 (Economics). It’s interesting to relate these results to the 

bar diagrams for the attributes that we see in Weka’s preprocess mode. This may suggest 

the explanation for these results.  

 

Now let us run the same experiments on the network with dependency arcs between 

independent attributes (load the second BIF file created with Weka). For example, setting 

the observation for research=v1 produces the same class distribution (0.901/0.099). 

 



 
 
probability (  "research" ) { //1 variable(s) and 2 values 

 table  

  1.0 // p(v1 | evidence ) 

  0.0;  // p(v0 | evidence ); 

} 

Posterior distribution: 

probability (  "document_class" ) { //1 variable(s) and 2 values 

 table  

  0.9013657056145675 // p(A | evidence ) 

  0.09863429438543249;  // p(B | evidence ); 

 

However, the other single attribute observations produce different class distributions. It’s 

interesting to find the connection between these changes and the particular structure of 

the dependency arcs. 

 

Investigating the role of dependency arcs between “independent” variables 

 

Experiments can be done with pairs of variables and then results compared with the 

Bayesian network with dependency arcs between independent attributes. For example, 

when research and science are independent (Naïve Bayes) we have 
 

p(A | research=v1, science=v0) = 0.795 

p(B | research=v1, science=v0) = 0.205 

 

While if there is a dependency arc from research to science we have 

 
p(A | research=v1, science=v0) = 0.901 

p(B | research=v1, science=v0) = 0.099 

 



Comparing the two class distributions shows how the dependency between research and 

science affects the classification. Obviously adding a dependency arc increases the 

likelihood of class A for this particular evidence.  

 

Relationships between non-class variables 

 

Another type of experiment is to look at the relationships between non-class attributes. 

Let us investigate the relationship between research and science. Setting research=v1 

produces  

 
P(science=v1|evidence)= 0.5 

P(science=v0|evidence)= 0.5 

 

While research=v0 produces  

 
P(science=v1|evidence)= 0.296 

P(science=v0|evidence)= 0.704 

 

In the original context of text documents these numbers can be read in the following way. 

If a document contains “research” it’s likely that it also contains “science”. However it 

does not contain “research” we cannot say anything about “science”. This sounds quite 

feasible for our domain of sciences and humanities. 

 

Further experiments 

 

We suggest the following further experiments: 

• Investigate the improvement in accuracy when dependency arcs are added 

(Bayesian networks) compared to Naïve Bayes.  

• Investigate how adding irrelevant attributes changes the classification accuracy of 

the Bayesian network model. 

• Investigate the difference in the effect of adding observations to independent and 

dependent variables with respect to the class distribution. Does the direction of 

the dependency make a difference?  

• Create more general Bayesian networks by abandoning the restriction to start the 

search for the network structure from the Naive Bayes network (set 

initAsNaivebayes=false) and by allowing more than 2 parent nodes (use 

maxNrOfParents>2). Compare the classification accuracy of these more general 

networks with that of the simpler ones.  

• Repeat all experiments with Naïve Bayes and Bayesian networks using the term 

count and TFIDF data sets. Note that for the term count representation the 

multinomial distribution has to be used. Also, when creates the Bayesian network 

with numeric data (TFIDF) Weka first applies attribute discretization. 

 

The deliverable for this phase is the results of all experiments (with the provided data as 

well as with new data collected and preprocessed by the students) and comment of these 

results including the answers to the questions and suggested explanations.  

 



Prerequisites and requirements 

 

Students should have basic knowledge of algebra, discrete mathematics and 

statistics. Another prerequisite is the data structures course.  While not necessary, 

experience with programming in Java would be helpful as the project uses Java-based 

packages. These packages are open source and students may want to use specific parts of 

their code to implement stand-alone applications for Bayesian learning or reasoning. 

 

The project is customizable and can accommodate different teaching approaches and 

different implementations depending on the choice of particular problems to be solved 

and tools to be used. The data collection step can be implemented manually or by using 

some software tools. The learning and reasoning steps use implementations of Naïve 

Bayes and Bayesian Networks algorithms available from free open source software 

packages. This allows the project to be extended to building stand-alone applications 

depending on the particular teaching goals and student experience in programming. 

 

The software packages and data sets used in the project are freely available on the Web: 

 

1. Weka 3 – Free open source Machine Learning and Data Mining software in Java 

available from http://www.cs.waikato.ac.nz/~ml/weka/index.html. 

2. JavaBayes – Bayesian Networks in Java, available from 

http://www.cs.cmu.edu/~javabayes/ 

3. Data sets for document classification accompanying the book Data Mining the Web: 

Uncovering Patterns in Web Content, Structure, and Usage ([2]) available from 

http://www.cs.ccsu.edu/~markov/dmwdata.zip. 

  

It is recommended that before starting the project students read Chapters 13 and 14 of 

Russell and Norvig’s book ([1]), Chapter 1, Chapter 3 (Section “Probability-based 

clustering”) and Chapter 5 (Section “Naïve Bayes Algorithm”) of Markov and Larose’s 

book ([2]), or Chapter 6 of Mitchell’s book ([3]). 

 

While working on the project students can use Witten and Frank’s book [4] and 

Bouckaert’s documentation [5] to get additional information on how to use the algorithms 

for Naïve Bayes classification and Bayesian Reasoning. 
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