Combinational circuit

Fig. 4-1 Block Diagram of Combinational Circuit
Fig. 4-2 Logic Diagram for Analysis Example
Fig. 4-3 Maps for BCD to Excess-3 Code Converter
Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter
Fig. 4-5 Implementation of Half-Adder

(a) \(S = x y' + x' y \)
\(C = xy \)

(b) \(S = x \oplus y \)
\(C = xy \)
\[S = x'y'z + x'yz' + xy'z' + xyz \]

\[S = xy + xz +yz \\
 = xy + xy'z + x'y'z \]

Fig. 4-6 Maps for Full Adder
Fig. 4-7 Implementation of Full Adder in Sum of Products
Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate
Fig. 4-9 4-Bit Adder
Fig. 4-10 Full Adder with P and G Shown
Fig. 4-11 Logic Diagram of Carry Lookahead Generator

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.
Fig. 4-12 4-Bit Adder with Carry Lookahead
Fig. 4-13 4-Bit Adder Subtractor
Fig. 4-14 Block Diagram of a BCD Adder
Fig. 4-15 2-Bit by 2-Bit Binary Multiplier
Fig. 4-16 4-Bit by 3-Bit Binary Multiplier
Fig. 4-17 4-Bit Magnitude Comparator
Fig. 4-18 3-to-8-Line Decoder

\[D_0 = x'y'z' \]
\[D_1 = x'y'z \]
\[D_2 = x'yz' \]
\[D_3 = x'yz \]
\[D_4 = xy'z' \]
\[D_5 = xy'z \]
\[D_6 = xyz' \]
\[D_7 = xyz \]
Fig. 4-19 2-to-4-Line Decoder with Enable Input
Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders
Fig. 4-21 Implementation of a Full Adder with a Decoder
Fig. 4-22 Maps for a Priority Encoder

\[x = D_2 + D_3 \]

\[y = D_3 + D_1D'_2 \]
Fig. 4-23 4-Input Priority Encoder
Fig. 4-24 2-to-1-Line Multiplexer

(a) Logic diagram

(b) Block diagram
(a) Logic diagram

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>I_0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>I_1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>I_2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>I_3</td>
</tr>
</tbody>
</table>

(b) Function table

Fig. 4-25 4-to-1-Line Multiplexer
Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

Function table

<table>
<thead>
<tr>
<th>E</th>
<th>S</th>
<th>Output Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>all 0's</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>select A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>select B</td>
</tr>
</tbody>
</table>

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.
Fig. 4-27 Implementing a Boolean Function with a Multiplexer

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Truth table

(b) Multiplexer implementation

$F = z$

$F = z'$

$F = 0$

$F = 1$
Fig. 4-28 Implementing a 4-Input Function with a Multiplexer
Normal input A
Output $Y = A$ if $C = 1$
High-impedance if $C = 0$
Control input C

Fig. 4-29 Graphic Symbol for a Three-State Buffer
(a) 2-to-1 line mux

(b) 4-to-1 line mux

Fig. 4-30 Multiplexers with Three-State Gates
Fig. 4-31 Three-State Gates
Fig. 4-32 2-to-1-Line Multiplexer with Three-State Buffers
Fig. 4-33 Stimulus and Design Modules Interaction
Fig. P4-1
(a) Segment designation

(b) Numerical designation for display

Fig. P4-9
Fig. P4-17 First Stage of a Parallel Adder