
Introduction

CS 483 – THEORY O COMPUTATION

Computer science is no more about computers than astronomy is about telescopes.
Edsger Dijkstra

Computer science is the study of computation.

Theory of computation studies mathematical models of computation.

In mathematical terms computation Is accepting or rejecting strings of symbols.

Major topics in Theory of Computation

Computational Model Does it have memory? What problems does it solve?

Finite State Machine No Automatic door controller

Pushdown Automaton Limited Language parsing

Turing Machine Unlimitted Any algorithm

Computability

• Which problems are solvable (algorithms exist to solve them)?

• Are there problems that cannot be solved by any computer?

• Any algorithm is equivalent to a Turing Machine algorithm.

• If there is no Turing Machine that solves a problem, then the problem is
unsolvable.

• Determine If any computer program terminates on any input (halting
problem).

Complexity

• How fast can a problem be solved?

• Polynomial (P)

• Nondeterministic polynomial (NP)

• P = NP?

Introduction

CS 483 – THEORY O COMPUTATION

Finite State Machines (Finite Automata) and Regular Languages

Automatic door controller

Input String NEITHER REAR NEITHER BOTH FRONT NEITHER . . .

Output (sate) CLOSED OPEN CLOSED OPEN OPEN CLOSED . . .

Accepting strings of {0, 1} that contain 001 as a substring

Regular Expression: (0|1)*001(0|1)* Matching 0100100 –> true, 0101000 -> false

Introduction

CS 483 – THEORY O COMPUTATION

Context-Free Languages (CFL) and Pushdown Automata (PDA)

Parsing an arithmetic expression with variables a, b

CF Grammar Derivation of (a+b)/a

S → S+S

S → S-S

S → S*S

S → S/S

S → (S)

S → N

N → a

N → b

Pushdown Automaton (PDA)

Recognize strings containing 0s followed by the same number of 1s: {0n1n|n ≥ 0}

CF Grammar PDA

S → 0S1

S → ε

Rule Result
Start

S → S/S

S → N

N → a

S → (S)

S → S+S

S → N

N → b

S → N

N → a

S

S/S

S/N

S/a

(S)/a

(S+S)/a

(S+N)/a

(S+b)/a

(N+b)/a

(a+b)/a

Introduction

CS 483 – THEORY O COMPUTATION

Turing Machines

Can implement any algorithm => If an algorithm exists then there is a Turing

machine that implements it.

Add 1 to a binary number, reject input 11...1 (overflow)

states:

q0,q1,q2,q3,qA,qR

input alphabet: 0,1

tape alphabet: 0,1,_

start state: q0

accept state: qA

reject state: qR

delta: q0,0 -> q1,0,R

 q0,1 -> q3,1,R

 q1,0 -> q1,0,R

 q1,1 -> q1,1,R

 q1,_ -> q2,_,L

 q2,1 -> q2,0,L

 q2,0 -> qA,1,L

 q3,0 -> q1,0,R

 q3,1 -> q3,1,R

 q3,_ -> qR,_,L

Introduction

CS 483 – THEORY O COMPUTATION

Computability

Hilbert’s tenth problem: Devise an algorithm that tests whether a polynomial has
an integral root (unsolvable, no algorithm exists).

Church-Turing Thesis: Intuitive notion of algorithms equals Turing machine

algorithms.

Halting Problem: Determine whether a Turing machine halts (by accepting or
rejecting) on a given input.

Theorem (Turing, 1936). The halting problem is undecidable.
Idea: Self reference (“This statement is false” – true or false?)
Proof:

• Assume the existence of a function halt(f, x) that solves the problem.

• Create a function test(f) that goes into an infinite loop if f(f) halts and
halts otherwise.

• Call test() with itself as argument.

• If test(test) halts, then test(test) goes into an infinite loop.

• If test(test) does not halt, then test(test) halts.

• Reductio ad absurdum.
 halt(f,x) cannot exist.

Example: test(test) halts or does not halt?

public boolean halt(String f, String x)
{
if (/* f(x) halts */) return true;
else return false;
}

public void test(String f)
{
if (halt(f, f))
while (true) { } // infinite loop
}

Introduction

CS 483 – THEORY O COMPUTATION

Complexity

Problems solved in Polynomial time (P)

• Is there a path between two nodes in a directed graph?

• Are two integers relatively prime?

NP problems

• Clique

• Subset Sum

P versus NP

• P = the class of languages for which membership can be decided quickly.

• NP = the class of languages for which membership can be verified quickly.

NP-complete problems

• SAT problem

P=NP?

