Notes on visualizing and analyzing instance spaces

Using attribute visualization to create simple hypotheses

Load the weather.arff file in Weka 3 and examine the selected attribute area. The top part of this area shows the statistical properties of the selected attribute. The bottom part visualizes the class distribution for each attribute value for the nominal attributes (outlook).

[image: image1.png]‘Weka Explorer (=]
reprocess | lset | Clster | Assooite | solect tutes | viusize |

Instances: 14 Aftributes: 5 Missing: 0 (0%) Distinct: 3 Unigue: 0 (0%)

o ame
I a——

2| tempersture.

3 rumisty
4 wincty
5 ey [oss: ey oy Visusize A1
s s
N

Remave

Status

- [)

The class distribution bars for the outlook attribute show an interesting situation – the value of “overcast” (the all blue bar) happens only in tuples with class value “yes” (represented by blue color). Thus this attribute can be used to create a hypothesis (model) of our data set. Such a model may be written as a the following rule:

IF outlook=overcast THEN play=yes.

This rule explains (covers) 4 of the tuples. Thus its support is 4/14. And it’s 100% accurate. Of course we may create similar models using other values of outlook (or other attributes too). For example, the rule

IF outlook=sunny THEN play=no.

has a bigger support of 5/14, but explains some of the tuples incorrectly. We chose the majory class values “no” (the red color), but because there other tuples covered by the same rule with a different class value (yes, or blue) it’s correctness is not 100%.

A similar approach may be used for numeric attributes. Let’s visualize “humidity”.

[image: image2.png]Weka Explorer

reprocess | lset | Clster | Assooite | solect tutes | viusize |

Open fle

1] loutlook

2" fermperature

4] windy
5 ey

A

Remave

——

i

Visualize Al

Status

o

Log

P

Here before showing the graphs Weka applies a default discretization (equal interval binning with two bins) and puts the values of humidity in two intervals: [65, 80.5] and (80.5, 96]. So, the better rule here (with more uniform color distribution) would be:

IF humidity>=65 and humidity<=80.5 THEN play=yes.

Single attribute selection by using visualization

An important use of this simple approach to create data models is to evaluate or select attributes. Click on “Visualize All” and you’ll see graphs of all attributes.

[image: image3.png]outiock temperature ity
i i o z 2
I |
o
b 248 o5 | b as w
wincly play
i o

Now, look for bars with most uniform color. The best three are outlook=overcast, play=yes and play=no with a single color. We already discussed the first one. The second and the third are even better, because they have bigger support. However they don’t make any sense as rules (a rule like “IF play=yes THEN play=yes” is logically always true and called “tautlogy”). So, the conclusion might be that “outlook” is the best attribute to represent the classification of our weather data.

More precisely, when evaluating an attribute we have to take into account the class distribution in all its values. Thus we have to count the instances in the majority class in each bar and their total divided by the total number of instances will be the accuracy. For example, for “outlook” we have 3/5 (sunny), 4/4 (overcast) and 3/5 (rainy). Thus, the accuracy of “outlook” is (3+4+3)/(5+4+5) = 10/14. The best attribute should maximize this accuracy.

We can also evaluate the numeric attributes and conclude that the accuracy of “humidity” is (6/7)+(4/7)=10/14 (to see these figures, first discretize “humidity” with two equal-interval bins and then visualize it in the “humidity”-“play” plane. Of course, a better accuracy may be found with a different discretization.)

Instance Spaces

The analysis we did in the previous section used single attributes. In our weather data we have four independent attributes (variables). We may consider the single attribute graphs as different one-dimensional projections of our complete five-dimensional instance space.

Weka provides also two-dimensional projections of the instance space through the “Visualize” panel.

[image: image4.png]Weka Explorer

reprocess | sty Custer | Assosite| et bt Visuize |

Plot Matrix outlook temperature humidity windy play.
play.
windy
7 g
B o o
oo ® 8 o
sy o o o o o
temperature . o e B B B
o ° o 8 8
Uz
potsize (115 "
s i
Potsze: 4] Select trndzs
st " sussanpes: | oo
[;
[cobur: ey (o) =
St
oK [)

Each square in the window above shows all data instances in two coordinate graphs with different attributes on the X and Y axes. When we click on a square we get an enlarged window showing the same projection. Let’s try two nominal attributes first – “outlook” and “windy”. Note that each point in the graph may represent more than one instance. This is because the instances are projected on two-attribute space (i.e. three of the attributes are skipped) and thus they may share the same values for those two attributes. Weka provides two ways to see all data points corresponding to a visual point: (1) if you click on a point an window pops up and lists all overlapping data points or (2) you can use the
”Jitter” to look from a different viewpoint, so that the instances don’t overlap.

[image: image5.png]. outiook (tom)

[cctour: piay (o)

[v: winety (o)

Clear

save

Plt: weather

Class colour

[setect instance

dtter

Now, by examining the above visualization we can identify regions with groups of instances, that is, areas where the two attribute values (on X and Y) intersect. The colors of the instances represent their class values (play attribute). Every region can be separated from other regions by straight lines parallel to X and Y. This separation can be defined by conditions on the two attributes shown on X and Y, and included in the left-hand side of a rule. Then, depending on the majority class (color) in the region, the rule can determine the value of the attribute play. Of course the goal here is to find a separation that will allow us to create rules determining single class regions. Such rules will be 100% accurate.

Generating classification rules

Now, let us try to separate the instance space shown in the two-attribute visualization and generate rules to determine the play attribute. Five regions are easily identifiable, thus defining five rules:

1. IF outlook=sunny AND windy=false THEN play=no.

The left-hand side of the rule describes the three instances in the top left corner. The majority class there is no. The support of this rule is 3 (# of instances covered), and its accuracy is 2/3 (2 correct out of 3).

2. IF outlook=sunny AND windy=true THEN play=no.

This rule describes the bottom left corner. Support=2, accuracy =1/2. We can also predict play = yes with the same accuracy.

3. IF outlook=overcast THEN play=yes.

Single class examples occupy the middle of the instance space (outlook = overcast). So, we don’t need to further split this area over the values of windy. Support=4, accuracy =4/4.

4. IF outlook=rainy AND windy=false THEN play=yes.

Describes top right corner. Support=3, accuracy=3/3.

5. IF outlook=rainy AND windy=true THEN play=no

Describes bottom right corner. Support=2, accuracy=2/2.

The above rule set is complete – it covers all instances (14). This means that for every instance, there is a rule whose left-hand side matches (covers) this instance.

The total accuracy of the above rule set is 12/14 = 0.8571. We compute this as the number of correctly classified instances (12) over the total number of instances covered (14).

Selecting pairs of attributes by using visualization

By using visualizations of different projections of the instance space (different attributes on X and Y), we can select a pair of attributes that best represent the data. For this purpose we have to compute the accuracy of the rules generated from each projections and then select the one with highest accuracy. We can do this even without generating rules. Consider for example the instance space projection on “outlook” and “windy”. Let’s assign a majority class for each region and count the instances that correspond to the majority class (correct instances) in that region. That is, we have:

· Top-left corner: majority class = no, 2 correct (out of 3)

· Bottom-left corner: majority class = no, 1 correct (out of 2)

· Middle area: majority class = yes, 4 correct (out of 4)

· Top-right corner: majority class = yes, 3 correct (out of 3)

· Bottom-right corner: majority class = no, 2 correct (out of 2)

Then totaling the correct instances we get 12 out of 14. Thus the accuracy for outlook and windy is 12/14=0.86.

Consider another visualization based on numeric attributes (temperature on X and humidity on Y).

[image: image6.png]£ Weka Explorer: Visualizing weather

P—— [Elf v 5]
forpeoom] ook

Because the numeric attributes usually have many values (note that the above graph does not show all values on the X and Y axes), the regions at the intersections of X and Y values in most cases contain single instances. Thus if we use the approach outlined above the accuracy for such spaces is usually high. This is also the situation shown above, where the accuracy is 100%. In terms of data tuples (see the original relational table for the weather data), this situation means that the values of temperature and humidity (jointly) uniquely identify each tuple. If we want to create rules from this visualization, we would end up with 14 rules – one for each instance. Each of these rules is 100% accurate, but covers just one instance. Most importantly such rules are very unlikely to coves new instances. This situation is an example of the so-called overspecialization (or overfitting the data), which has to be avoided in inductive learning/mining.

Because of the above-mentioned reasons, the graphs of the instance spaces with numeric attributes do not show easily identifiable regions (the instances are too scattered). Therefore for visual analysis of instance spaces we usually rely on nominal (or discretized numeric) attributes. In fact, we can use the numeric instance spaces to discretize numeric attributes. A simple approach for this would be to find intervals that would allow defining rectangular regions in the instance space with mostly single class instances inside. For example, for the “temperature-humidity” graph we may identify a temperature interval [64, 75] and a humidity interval [65, 80.5], which define a rectangle area with four blue points inside.

