Evaluation: the key to success

- How predictive is the model we learned?
- Error on the training data is *not* a good indicator of performance on future data
 - Otherwise 1-NN would be the optimum classifier!
- Simple solution that can be used if lots of (labeled) data is available:
 - Split data into training and test set
- However: (labeled) data is usually limited
 - More sophisticated techniques need to be used
Issues in evaluation

- Statistical reliability of estimated differences in performance (→ significance tests)
- Choice of performance measure:
 - Number of correct classifications
 - Accuracy of probability estimates
 - Error in numeric predictions
- Costs assigned to different types of errors
 - Many practical applications involve costs
Training and testing I

- Natural performance measure for classification problems: error rate
 - Success: instance’s class is predicted correctly
 - Error: instance’s class is predicted incorrectly
 - Error rate: proportion of errors made over the whole set of instances
- Resubstitution error: error rate obtained from the training data
- Resubstitution error is (hopelessly) optimistic!
Training and testing II

- **Test set**: set of independent instances that have played no part in formation of classifier
 - Assumption: both training data and test data are representative samples of the underlying problem
- Test and training data may differ in nature
 - Example: classifiers built using customer data from two different towns A and B
 - To estimate performance of classifier from town A in completely new town, test it on data from B
A note on parameter tuning

- It is important that the test data is not used \textit{in any way} to create the classifier.

- Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings

- The test data can’t be used for parameter tuning!

- Proper procedure uses \textit{three sets: training data, validation data, and test data}:
 - Validation data is used to optimize parameters.
Making the most of the data

- Once evaluation is complete, *all the data* can be used to build the final classifier.
- Generally, the larger the training data the better the classifier (but returns diminish).
- The larger the test data the more accurate the error estimate.
- *Holdout* procedure: method of splitting original data into training and test set.
 - Dilemma: ideally we want both, a large training and a large test set.
Predicting performance

- Assume the estimated error rate is 25%. How close is this to the true error rate?
 - Depends on the amount of test data
- Prediction is just like tossing a biased (!) coin
 - “Head” is a “success”, “tail” is an “error”
- In statistics, a succession of independent events like this is called a *Bernoulli process*
 - Statistical theory provides us with confidence intervals for the true underlying proportion!
Confidence intervals

- We can say: \(p \) lies within a certain specified interval with a certain specified confidence.

- Example: \(S=750 \) successes in \(N=1000 \) trials
 - Estimated success rate: 75%
 - How close is this to true success rate \(p \)?
 - Answer: with 80% confidence \(p \in [73.2,76.7] \)

- Another example: \(S=75 \) and \(N=100 \)
 - Estimated success rate: 75%
 - With 80% confidence \(p \in [69.1,80.1] \)
Mean and variance

- Mean and variance for a Bernoulli trial: $p, p(1-p)$
- Expected success rate $f = S/N$
- Mean and variance for f: $p, p(1-p)/N$
- For large enough N, f follows a normal distribution
- $c\%$ confidence interval $[-z \leq X \leq z]$ for random variable with 0 mean is given by: $\Pr[-z \leq X \leq z] = c$
- Given a symmetric distribution:
 $$\Pr[-z \leq X \leq z] = 1 - (2 \times \Pr[X \geq z])$$
Confidence limits

- Confidence limits for the normal distribution with 0 mean and a variance of 1:

<table>
<thead>
<tr>
<th>Pr[X≥z]</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>3.09</td>
</tr>
<tr>
<td>0.5%</td>
<td>2.58</td>
</tr>
<tr>
<td>1%</td>
<td>2.33</td>
</tr>
<tr>
<td>5%</td>
<td>1.65</td>
</tr>
<tr>
<td>10%</td>
<td>1.28</td>
</tr>
<tr>
<td>20%</td>
<td>0.84</td>
</tr>
<tr>
<td>40%</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- Thus: \(\Pr[-1.65 \leq X \leq 1.65] = 90\% \)

- To use this we have to reduce our random variable \(f \) to have 0 mean and unit variance
Transforming f

- Transformed value for f: $\frac{f - p}{\sqrt{p(1 - p) / N}}$
 (i.e. subtract the mean and divide by the standard deviation)
- Resulting equation:
 $\Pr\left[-z \leq \frac{f - p}{\sqrt{p(1 - p) / N}} \leq z\right] = c$
- Solving for p:
 $p = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) \div \left(1 + \frac{z^2}{N} \right)$
Examples

- $f=75\%,\ N=1000,\ c=80\%$ (so that $z=1.28$):
 \[p \in [0.732, 0.767] \]

- $f=75\%,\ N=100,\ c=80\%$ (so that $z=1.28$):
 \[p \in [0.691, 0.801] \]

- Note that normal distribution assumption is only valid for large N (i.e. $N > 100$)

- $f=75\%,\ N=10,\ c=80\%$ (so that $z=1.28$):
 \[p \in [0.549, 0.881] \]

 should be taken with a grain of salt
Holdout estimation

- What shall we do if the amount of data is limited?
- The *holdout* method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Advanced version uses *stratification*
 - Ensures that each class is represented with approximately equal proportions in both subsets
Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the *repeated holdout* method
- Still not optimum: the different test set overlap
 - Can we prevent overlapping?
Cross-validation

- *Cross-validation* avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called *k-fold cross-validation*
- Often the subsets are stratified before the cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
More on cross-validation

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten? Extensive experiments have shown that this is the best choice to get an accurate estimate
 - There is also some theoretical evidence for this
- Stratification reduces the estimate’s variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)
Leave-one-out cross-validation

- Leave-one-out cross-validation is a particular form of cross-validation:
 - The number of folds is set to the number of training instances
 - I.e., a classifier has to be built n times, where n is the number of training instances
- Makes maximum use of the data
- No random subsampling involved
- Very computationally expensive (exception: NN)
LOO-CV and stratification

- Another disadvantage of LOO-CV: stratification is not possible
 - It *guarantees* a non-stratified sample because there is only one instance in the test set!

- Extreme example: completely random dataset with two classes and equal proportions for both of them
 - Best inducer predicts majority class (results in 50% on fresh data from this domain)
 - LOO-CV estimate for this inducer will be 100%!
The bootstrap

- CV uses sampling *without replacement*
 - The same instance, once selected, can not be selected again for a particular training/test set
- The *bootstrap* is an estimation method that uses sampling with replacement to form the training set
 - A dataset of n instances is sampled n times with replacement to form a new dataset of n instances
 - This data is used as the training set
 - The instances from the original dataset that don’t occur in the new training set are used for testing
The 0.632 bootstrap

- This method is also called the 0.632 bootstrap
 - A particular instance has a probability of $1 - 1/n$ of not being picked
 - Thus its probability of ending up in the test data is:

\[
\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368
\]

- This means the training data will contain approximately 63.2% of the instances
Estimating error with the bootstrap

- The error estimate on the test data will be very pessimistic
 - It contains only ~63% of the instances
- Thus it is combined with the resubstitution error:
 \[
 \text{err} = 0.632 \cdot e_{\text{test instances}} + 0.368 \cdot e_{\text{training instances}}
 \]
- The resubstitution error gets less weight than the error on the test data
- Process is repeated several time, with different replacement samples, and the results averaged
More on the bootstrap

- It is probably the best way of estimating performance for very small datasets
- However, it has some problems
 - Consider the random dataset from above
 - A perfect memorizes will achieve 0% resubstitution error and ~50% error on test data
 - Bootstrap estimate for this classifier:
 \[err = 0.632 \cdot 50\% + 0.368 \cdot 0\% = 31.6\% \]
 - True expected error: 50%
Counting the costs

- In practice, different types of classification errors often incur different costs

- Examples:
 - Predicting when cows are in heat ("in estrus")
 - “Not in estrus” correct 97% of the time
 - Loan decisions
 - Oil-slick detection
 - Fault diagnosis
 - Promotional mailing
Taking costs into account

- The *confusion matrix*:

<table>
<thead>
<tr>
<th>Actual class</th>
<th>Predicted class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>True positive</td>
</tr>
<tr>
<td>No</td>
<td>False positive</td>
<td>True negative</td>
</tr>
</tbody>
</table>

- There many other types of costs!
 - E.g.: cost of collecting training data
Lift charts

- In practice, costs are rarely known
- Decisions are usually made by comparing possible scenarios
- Example: promotional mailout
 - Situation 1: classifier predicts that 0.1% of all households will respond
 - Situation 2: classifier predicts that 0.4% of the 10000 most promising households will respond
- A lift chart allows for a visual comparison
Generating a lift chart

- Instances are sorted according to their predicted probability of being a true positive:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Predicted probability</th>
<th>Actual class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>0.93</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>0.88</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- In lift chart, x axis is sample size and y axis is number of true positives
A hypothetical lift chart
ROC curves

- **ROC curves** are similar to lift charts
 - “ROC” stands for “receiver operating characteristic”
 - Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel

- Differences to lift chart:
 - y axis shows percentage of true positives in sample (rather than absolute number)
 - x axis shows percentage of false positives in sample (rather than sample size)
A sample ROC curve
Cross-validation and ROC curves

- Simple method of getting a ROC curve using cross-validation:
 - Collect probabilities for instances in test folds
 - Sort instances according to probabilities
- This method is implemented in WEKA
- However, this is just one possibility
 - The method described in the book generates an ROC curve for each fold and averages them
ROC curves for two schemes
The convex hull

- Given two learning schemes we can achieve any point on the convex hull!
- TP and FP rates for scheme 1: t_1 and f_1
- TP and FP rates for scheme 2: t_2 and f_2
- If scheme 1 is used to predict $100\times q\%$ of the cases and scheme 2 for the rest, then we get:
 - TP rate for combined scheme: $q \times t_1 + (1-q) \times t_2$
 - FP rate for combined scheme: $q \times f_2 + (1-q) \times f_2$
Cost-sensitive learning

- Most learning schemes do not perform cost-sensitive learning
 - They generate the same classifier no matter what costs are assigned to the different classes
 - Example: standard decision tree learner
- Simple methods for cost-sensitive learning:
 - Resampling of instances according to costs
 - Weighting of instances according to costs
- Some schemes are inherently cost-sensitive, e.g. naïve Bayes
Measures in information retrieval

- Percentage of retrieved documents that are relevant: \(\text{precision} = \frac{TP}{TP + FP} \)
- Percentage of relevant documents that are returned: \(\text{recall} = \frac{TP}{TP + FN} \)
- Precision/recall curves have hyperbolic shape
- Summary measures: average precision at 20\%, 50\% and 80\% recall (three-point average recall)
- \(F\text{-measure} = \frac{2 \times \text{recall} \times \text{precision}}{\text{recall} + \text{precision}} \)
Summary of measures

<table>
<thead>
<tr>
<th>Plot</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift chart</td>
<td>TP/(TP+FN)</td>
</tr>
<tr>
<td>ROC curve</td>
<td>TP/((TP+FP)/((TP+FP+TN+FN)))</td>
</tr>
<tr>
<td>Recall-precision curve</td>
<td>TP/(TP+FN)</td>
</tr>
<tr>
<td>TP rate</td>
<td>FP/(FP+TN)</td>
</tr>
<tr>
<td>TP/(TP+FP)</td>
<td></td>
</tr>
<tr>
<td>Recall-precision curve</td>
<td>Recall</td>
</tr>
<tr>
<td>Precision</td>
<td>TP/(TP+FP)</td>
</tr>
<tr>
<td>TP/(TP+FN)</td>
<td></td>
</tr>
<tr>
<td>TP/(TP+FP)</td>
<td></td>
</tr>
<tr>
<td>TP/(TP+FP)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain</th>
<th>Plot</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift chart</td>
<td>Marketing</td>
<td>TP/(TP+FN)</td>
</tr>
<tr>
<td>ROC curve</td>
<td>Communications</td>
<td>TP/((TP+FP)/((TP+FP+TN+FN)))</td>
</tr>
<tr>
<td>Recall-precision curve</td>
<td>Information retrieval</td>
<td>Recall/TP/(TP+FP)</td>
</tr>
<tr>
<td>TP/(TP+FN)</td>
<td>TP/(TP+FP)</td>
<td>TP/(TP+FN)</td>
</tr>
<tr>
<td>TP/(TP+FP)</td>
<td>TP/(TP+FP)</td>
<td>TP/(TP+FP)</td>
</tr>
</tbody>
</table>

- TP: True Positive
- TN: True Negative
- FP: False Positive
- FN: False Negative
The MDL principle

- MDL stands for *minimum description length*
- The description length is defined as:

 "space required to describe a theory
 +
 "space required to describe the theory’s mistakes"

- In our case the theory is the classifier and the mistakes are the errors on the training data
- Aim: we want a classifier with minimal DL
- MDL principle is a *model selection criterion*
Model selection criteria

- Model selection criteria attempt to find a good compromise between:
 A. The complexity of a model
 B. Its prediction accuracy on the training data

- Reasoning: a good model is a simple model that achieves high accuracy on the given data

- Also known as Occam’s Razor: the best theory is the smallest one that describes all the facts
Elegance vs. errors

■ Theory 1: very simple, elegant theory that explains the data almost perfectly
■ Theory 2: significantly more complex theory that reproduces the data without mistakes
■ Theory 1 is probably preferable
■ Classical example: Kepler’s three laws on planetary motion
 ◆ Less accurate than Copernicus’s latest refinement of the Ptolemaic theory of epicycles
MDL and compression

- The MDL principle is closely related to data compression:
 - It postulates that the best theory is the one that compresses the data the most
 - I.e. to compress a dataset we generate a model and then store the model and its mistakes
- We need to compute (a) the size of the model and (b) the space needed for encoding the errors
- (b) is easy: can use the informational loss function
- For (a) we need a method to encode the model
DL and Bayes’s theorem

- $L[T]$ = “length” of the theory
- $L[E|T]$ = training set encoded wrt. the theory
- Description length = $L[T] + L[E|T]$
- Bayes’s theorem gives us the a posteriori probability of a theory given the data:

\[
Pr[T | E] = \frac{Pr[E | T]Pr[T]}{Pr[E]}
\]

- Equivalent to:

\[-\log Pr[T | E] = -\log Pr[E | T] - \log Pr[T] + \log Pr[E]\]
MDL and MAP

- MAP stands for maximum a posteriori probability
- Finding the MAP theory corresponds to finding the MDL theory
- Difficult bit in applying the MAP principle: determining the prior probability $\Pr[T]$ of the theory
- Corresponds to difficult part in applying the MDL principle: coding scheme for the theory
- I.e. if we know a priori that a particular theory is more likely we need less bits to encode it
Discussion of the MDL principle

- Advantage: makes full use of the training data when selecting a model
- Disadvantage 1: appropriate coding scheme/prior probabilities for theories are crucial
- Disadvantage 2: no guarantee that the MDL theory is the one which minimizes the expected error
- Note: Occam’s Razor is an axiom!
- Epicurus’s principle of multiple explanations: keep all theories that are consistent with the data
Bayesian model averaging

- Reflects Epicurus’s principle: all theories are used for prediction weighted according to $P[T|E]$
- Let I be a new instance whose class we want to predict
- Let C be the random variable denoting the class
- Then BMA gives us the probability of C given I, the training data E, and the possible theories T_j:

$$\Pr[C | I, E] = \sum_j \Pr[C | I, T_j] \Pr[T_j | E]$$
MDL and clustering

- DL of theory: DL needed for encoding the clusters (e.g. cluster centers)
- DL of data given theory: need to encode cluster membership and position relative to cluster (e.g. distance to cluster center)
- Works if coding scheme needs less code space for small numbers than for large ones
- With nominal attributes, we need to communicate probability distributions for each cluster