
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

6th

Edition

Chapter 1

Computer Abstractions

and Technology

Chapter 1 — Computer Abstractions and Technology — 2

The Computer Revolution

◼ Progress in computer technology

◼ Underpinned by domain-specific accelerators

◼ Makes novel applications feasible

◼ Computers in automobiles

◼ Cell phones

◼ Human genome project

◼ World Wide Web

◼ Search Engines

◼ Computers are pervasive

§
1
.1

 In
tro

d
u
c
tio

n

Chapter 1 — Computer Abstractions and Technology — 3

Classes of Computers

◼ Personal computers

◼ General purpose, variety of software

◼ Subject to cost/performance tradeoff

◼ Server computers

◼ Network based

◼ High capacity, performance, reliability

◼ Range from small servers to building sized

Classes of Computers

◼ Supercomputers

◼ Type of server

◼ High-end scientific and engineering
calculations

◼ Highest capability but represent a small
fraction of the overall computer market

◼ Embedded computers

◼ Hidden as components of systems

◼ Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 4

Chapter 1 — Computer Abstractions and Technology — 5

The PostPC Era

The PostPC Era

Chapter 1 — Computer Abstractions and Technology — 6

◼ Personal Mobile Device (PMD)

◼ Battery operated

◼ Connects to the Internet

◼ Hundreds of dollars

◼ Smart phones, tablets, electronic glasses

◼ Cloud computing

◼ Warehouse Scale Computers (WSC)

◼ Software as a Service (SaaS)

◼ Portion of software run on a PMD and a
portion run in the Cloud

◼ Amazon and Google

Chapter 1 — Computer Abstractions and Technology — 7

What You Will Learn

◼ How programs are translated into the

machine language

◼ And how the hardware executes them

◼ The hardware/software interface

◼ What determines program performance

◼ And how it can be improved

◼ How hardware designers improve

performance

◼ What is parallel processing

Seven Great Ideas

◼ Use abstraction to simplify design

◼ Make the common case fast

◼ Performance via parallelism

◼ Performance via pipelining

◼ Performance via prediction

◼ Hierarchy of memories

◼ Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 9

§
1
.2

 S
e
v
e
n
 G

re
a
t Id

e
a
s
 in

 C
o
m

p
u
te

r A
rc

h
ite

c
tu

re

Chapter 1 — Computer Abstractions and Technology — 10

Below Your Program

◼ Application software

◼ Written in high-level language

◼ System software

◼ Compiler: translates HLL code to

machine code

◼ Operating System: service code

◼ Handling input/output

◼ Managing memory and storage

◼ Scheduling tasks & sharing resources

◼ Hardware

◼ Processor, memory, I/O controllers

§
1
.3

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 11

Levels of Program Code

◼ High-level language
◼ Level of abstraction closer

to problem domain

◼ Provides for productivity
and portability

◼ Assembly language
◼ Textual representation of

instructions

◼ Hardware representation
◼ Binary digits (bits)

◼ Encoded instructions and
data

Software:

Application

Operating system

Firmware

Instruction set architecture:

Data type and structures: encodings and machine representation

Instruction set

Instruction formats

Addressing modes and accessing data and instructions

Hardware:

Instruction set processing

I/O System

Digital design

Circuit design

Layout

Computer Architecture =

Instruction Set Architecture +

Machine Organization

Instruction Set Architecture

• Organization of Programmable Storage

• Data type and Structures: encodings and machine representation

• Instruction set

• Instruction Formats

• Addressing Modes and Accessing Data and Instructions

• Exception Handling

Computer Organization

• Capabilities and Performance of the Basic Functional Units

• The Way These Units are Interconnected

• Information Flow between components

• Information Flow Control

instruction set

software

hardware

Software level

C:

• A = B + C

Assembler

• B -> $s1, C -> $s2

• add $t0, $s1, $s2

• $t0 -> A

Machine instruction:

op rs rt rd … funct

• decimal: 0 17 18 8 0 32

• binary: 000000 10001 10010 01000 00000 100000

Register file and ALU

Instruction
Registers

Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Write�
data

ALU�
result

ALU

Zero

RegWrite

ALU operation
3

Inside register file

n-to-1�

decoder

Register 0

Register 1

Register n – 1

C

C

D

D

Register n

C

C

D

D

Register number

Write

Register data

0

1

n – 1

n

M�

u�

x

Register 0

Register 1

Register n – 1

Register n

M�

u�

x
Read data 1

Read data 2

Read register�

number 1

Read register�

number 2

Arithmetic Logic Unit (ALU)

Result31

a31

b31

Result0

CarryIn

a0

b0

Result1

a1

b1

Result2

a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

ALU Result

Zero

Overflow

a

b

ALU operation

CarryOut

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

ALU: Carry Out logic

CarryOut = b.CarryIn + a.CarryIn + a.b + a.b.CarryIn

or

CarryOut = b.CarryIn + a.CarryIn + a.b

Sum

CarryIn

CarryOut

a

b

b

CarryOu

a

CarryIn

t

Logic gates

c = a . bba

000

010

001

111

b

a
c

b

a
c

a c

c = a + bba

000

110

101

111

10

01

c = aa

a0

b1

cd

0

1

a

c

b

d

1. AND gate (c = a . b)

2. OR gate (c = a + b)

3. Inverter (c = a)�

4. Multiplexor�

(if d = = 0, c = a;�

else c = b)

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

RegDst

ALUSrc

Instruction [31 26]

4

16 32
Instruction [15 0]

0

0
M�
u�
x

0

1

Control

Add
ALU�

result

M�
u�
x

0

1

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�
u�
x

1

ALU�
result

Zero

PCSrc

Data�
memory

Write�
data

Read�
data

M�
u�
x

1

Instruction [15 11]

ALU�
control

Shift�
left 2

ALU

Address

Chapter 1 — Computer Abstractions and Technology — 8

Understanding Performance

◼ Algorithm

◼ Determines number of operations executed

◼ Programming language, compiler, architecture

◼ Determine number of machine instructions executed

per operation

◼ Processor and memory system

◼ Determine how fast instructions are executed

◼ I/O system (including OS)

◼ Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 12

Response Time and Throughput

◼ Response time

◼ How long it takes to do a task

◼ Throughput

◼ Total work done per unit time

◼ e.g., tasks/transactions/… per hour

◼ How are response time and throughput affected

by

◼ Replacing the processor with a faster version?

◼ Adding more processors?

◼ We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 13

Relative Performance

◼ Define Performance = 1/Execution Time

◼ “X is n time faster than Y”

n== XY

YX

time Executiontime Execution

ePerformancePerformanc

◼ Example: time taken to run a program

◼ 10s on A, 15s on B

◼ Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

◼ So A is 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 14

Measuring Execution Time

◼ Elapsed time

◼ Total response time, including all aspects
◼ Processing, I/O, OS overhead, idle time

◼ Determines system performance

◼ CPU time

◼ Time spent processing a given job
◼ Discounts I/O time, other jobs’ shares

◼ Comprises user CPU time and system CPU
time

◼ Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 15

CPU Clocking

◼ Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

◼ Clock period: duration of a clock cycle

◼ e.g., 250ps = 0.25ns = 250×10–12s

◼ Clock frequency (rate): cycles per second

◼ e.g., 4.0GHz = 4000MHz = 4.0×109Hz

Chapter 1 — Computer Abstractions and Technology — 16

CPU Time

◼ Performance improved by

◼ Reducing number of clock cycles

◼ Increasing clock rate

◼ Hardware designer must often trade off clock

rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=

Chapter 1 — Computer Abstractions and Technology — 17

CPU Time Example

◼ Computer A: 2GHz clock, 10s CPU time

◼ Designing Computer B

◼ Aim for 6s CPU time

◼ Can do faster clock, but causes 1.2 × clock cycles

◼ How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B

=

=

=

==

=

==

Chapter 1 — Computer Abstractions and Technology — 18

Instruction Count and CPI

◼ Instruction Count for a program

◼ Determined by program, ISA and compiler

◼ Average cycles per instruction

◼ Determined by CPU hardware

◼ If different instructions have different CPI

◼ Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

=

=

=

Chapter 1 — Computer Abstractions and Technology — 19

CPI Example

◼ Computer A: Cycle Time = 250ps, CPI = 2.0

◼ Computer B: Cycle Time = 500ps, CPI = 1.2

◼ Same ISA

◼ Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=

=

==

=

==

=

A is faster…

…by this much

Chapter 1 — Computer Abstractions and Technology — 20

CPI in More Detail

◼ If different instruction classes take different

numbers of cycles

=

=
n

1i

ii)Count nInstructio(CPICycles Clock

◼ Weighted average CPI

=

==

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 21

CPI Example

◼ Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

◼ Sequence 1: IC = 5

◼ Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

◼ Avg. CPI = 10/5 = 2.0

◼ Sequence 2: IC = 6

◼ Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

◼ Avg. CPI = 9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 22

Performance Summary

◼ Performance depends on

◼ Algorithm: affects IC, possibly CPI

◼ Programming language: affects IC, CPI

◼ Compiler: affects IC, CPI

◼ Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =

Chapter 1 — Computer Abstractions and Technology — 23

Uniprocessor Performance
§
1
.8

 T
h
e
 S

e
a
 C

h
a
n
g
e
: T

h
e
 S

w
itc

h
 to

 M
u
ltip

ro
c
e
s
s
o
rs

Constrained by power, instruction-level parallelism,

memory latency

Chapter 1 — Computer Abstractions and Technology — 24

Multiprocessors

◼ Multicore microprocessors

◼ More than one processor per chip

◼ Requires explicitly parallel programming

◼ Compare with instruction level parallelism

◼ Hardware executes multiple instructions at once

◼ Hidden from the programmer

◼ Hard to do

◼ Programming for performance

◼ Load balancing

◼ Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 25

SPEC CPU Benchmark

◼ Programs used to measure performance
◼ Supposedly typical of actual workload

◼ Standard Performance Evaluation Corp (SPEC)
◼ Develops benchmarks for CPU, I/O, Web, …

◼ SPEC CPU2006
◼ Elapsed time to execute a selection of programs

◼ Negligible I/O, so focuses on CPU performance

◼ Normalize relative to reference machine

◼ Summarize as geometric mean of performance ratios
◼ CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution
=

Chapter 1 — Computer Abstractions and Technology — 26

SPECspeed 2017 Integer benchmarks on a

1.8 GHz Intel Xeon E5-2650L

Chapter 1 — Computer Abstractions and Technology — 27

Pitfall: Amdahl’s Law

◼ Improving an aspect of a computer and

expecting a proportional improvement in

overall performance

§
1
.1

1
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

20
80

20 +=
n

◼ Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T +=

◼ Example: multiply accounts for 80s/100s

◼ How much improvement in multiply performance to

get 5× overall?

◼ Corollary: make the common case fast

	Introduction
	385SL1
	Introduction
	Introduction

