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The Computer Revolution

◼ Progress in computer technology

◼ Underpinned by domain-specific accelerators

◼ Makes novel applications feasible

◼ Computers in automobiles

◼ Cell phones

◼ Human genome project

◼ World Wide Web

◼ Search Engines

◼ Computers are pervasive
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Classes of Computers

◼ Personal computers

◼ General purpose, variety of software

◼ Subject to cost/performance tradeoff

◼ Server computers

◼ Network based

◼ High capacity, performance, reliability

◼ Range from small servers to building sized



Classes of Computers

◼ Supercomputers

◼ Type of server

◼ High-end scientific and engineering 
calculations

◼ Highest capability but represent a small 
fraction of the overall computer market

◼ Embedded computers

◼ Hidden as components of systems

◼ Stringent power/performance/cost constraints
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The PostPC Era



The PostPC Era
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◼ Personal Mobile Device (PMD)

◼ Battery operated

◼ Connects to the Internet

◼ Hundreds of dollars

◼ Smart phones, tablets, electronic glasses

◼ Cloud computing

◼ Warehouse Scale Computers (WSC)

◼ Software as a Service (SaaS)

◼ Portion of software run on a PMD and a
portion run in the Cloud

◼ Amazon and Google
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What You Will Learn

◼ How programs are translated into the 

machine language

◼ And how the hardware executes them

◼ The hardware/software interface

◼ What determines program performance

◼ And how it can be improved

◼ How hardware designers improve 

performance

◼ What is parallel processing



Seven Great Ideas

◼ Use abstraction to simplify design

◼ Make the common case fast

◼ Performance via parallelism

◼ Performance via pipelining

◼ Performance via prediction

◼ Hierarchy of memories

◼ Dependability via redundancy
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Below Your Program

◼ Application software

◼ Written in high-level language

◼ System software

◼ Compiler: translates HLL code to

machine code

◼ Operating System: service code

◼ Handling input/output

◼ Managing memory and storage

◼ Scheduling tasks & sharing resources

◼ Hardware

◼ Processor, memory, I/O controllers
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Levels of Program Code

◼ High-level language
◼ Level of abstraction closer

to problem domain

◼ Provides for productivity
and portability

◼ Assembly language
◼ Textual representation of

instructions

◼ Hardware representation
◼ Binary digits (bits)

◼ Encoded instructions and
data



Software:

Application

Operating system

Firmware

Instruction set architecture:

Data type and structures: encodings and machine representation

Instruction set 

Instruction formats 

Addressing modes and accessing data and instructions

Hardware:

Instruction set processing

I/O System

Digital design 

Circuit design 

Layout



Computer Architecture   = 

Instruction Set Architecture  + 

Machine Organization



Instruction Set Architecture

• Organization of Programmable Storage 

• Data type and Structures: encodings and machine representation 

• Instruction set 

• Instruction Formats

• Addressing Modes and Accessing Data and Instructions 

• Exception Handling 

Computer Organization

• Capabilities and Performance of the Basic Functional Units 

• The Way These Units are Interconnected 

• Information Flow between components

• Information Flow Control 



instruction set

software

hardware



Software level

C:

• A = B + C

Assembler

• B -> $s1, C -> $s2

• add $t0, $s1, $s2

• $t0 -> A

Machine instruction:

op rs rt rd … funct

• decimal: 0 17 18 8 0 32

• binary: 000000 10001  10010  01000  00000  100000
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Inside register file
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Arithmetic Logic Unit (ALU)
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ALU: Carry Out logic

CarryOut = b.CarryIn + a.CarryIn + a.b + a.b.CarryIn

or

CarryOut = b.CarryIn + a.CarryIn + a.b

Sum
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a
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t



Logic gates
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Understanding Performance

◼ Algorithm

◼ Determines number of operations executed

◼ Programming language, compiler, architecture

◼ Determine number of machine instructions executed

per operation

◼ Processor and memory system

◼ Determine how fast instructions are executed

◼ I/O system (including OS)

◼ Determines how fast I/O operations are executed
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Response Time and Throughput

◼ Response time

◼ How long it takes to do a task

◼ Throughput

◼ Total work done per unit time

◼ e.g., tasks/transactions/… per hour

◼ How are response time and throughput affected

by

◼ Replacing the processor with a faster version?

◼ Adding more processors?

◼ We’ll focus on response time for now…
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Relative Performance

◼ Define Performance = 1/Execution Time

◼ “X is n time faster than Y”

n== XY

YX

time Executiontime Execution

ePerformancePerformanc

◼ Example: time taken to run a program

◼ 10s on A, 15s on B

◼ Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

◼ So A is 1.5 times faster than B
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Measuring Execution Time

◼ Elapsed time

◼ Total response time, including all aspects
◼ Processing, I/O, OS overhead, idle time

◼ Determines system performance

◼ CPU time

◼ Time spent processing a given job
◼ Discounts I/O time, other jobs’ shares

◼ Comprises user CPU time and system CPU 
time

◼ Different programs are affected differently by 
CPU and system performance
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CPU Clocking

◼ Operation of digital hardware governed by a 

constant-rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

◼ Clock period: duration of a clock cycle

◼ e.g., 250ps = 0.25ns = 250×10–12s

◼ Clock frequency (rate): cycles per second

◼ e.g., 4.0GHz = 4000MHz = 4.0×109Hz
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CPU Time

◼ Performance improved by

◼ Reducing number of clock cycles

◼ Increasing clock rate

◼ Hardware designer must often trade off clock 

rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=
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CPU Time Example

◼ Computer A: 2GHz clock, 10s CPU time

◼ Designing Computer B

◼ Aim for 6s CPU time

◼ Can do faster clock, but causes 1.2 × clock cycles

◼ How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B

=


=


=

==

=


==
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Instruction Count and CPI

◼ Instruction Count for a program

◼ Determined by program, ISA and compiler

◼ Average cycles per instruction

◼ Determined by CPU hardware

◼ If different instructions have different CPI

◼ Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock


=

=

=
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CPI Example

◼ Computer A: Cycle Time = 250ps, CPI = 2.0

◼ Computer B: Cycle Time = 500ps, CPI = 1.2

◼ Same ISA

◼ Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=



=

==

=

==

=

A is faster…

…by this much
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CPI in More Detail

◼ If different instruction classes take different 

numbers of cycles


=

=
n

1i

ii )Count nInstructio(CPICycles Clock

◼ Weighted average CPI


=









==

n
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i
i
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Count nInstructio

Cycles Clock
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CPI Example

◼ Alternative compiled code sequences using 
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

◼ Sequence 1: IC = 5

◼ Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

◼ Avg. CPI = 10/5 = 2.0

◼ Sequence 2: IC = 6

◼ Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

◼ Avg. CPI = 9/6 = 1.5
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Performance Summary

◼ Performance depends on

◼ Algorithm: affects IC, possibly CPI

◼ Programming language: affects IC, CPI

◼ Compiler: affects IC, CPI

◼ Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =
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Uniprocessor Performance
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Multiprocessors

◼ Multicore microprocessors

◼ More than one processor per chip

◼ Requires explicitly parallel programming

◼ Compare with instruction level parallelism

◼ Hardware executes multiple instructions at once

◼ Hidden from the programmer

◼ Hard to do

◼ Programming for performance

◼ Load balancing

◼ Optimizing communication and synchronization
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SPEC CPU Benchmark

◼ Programs used to measure performance
◼ Supposedly typical of actual workload

◼ Standard Performance Evaluation Corp (SPEC)
◼ Develops benchmarks for CPU, I/O, Web, …

◼ SPEC CPU2006
◼ Elapsed time to execute a selection of programs

◼ Negligible I/O, so focuses on CPU performance

◼ Normalize relative to reference machine

◼ Summarize as geometric mean of performance ratios
◼ CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution
=
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SPECspeed 2017 Integer benchmarks on a

1.8 GHz Intel Xeon E5-2650L
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Pitfall: Amdahl’s Law

◼ Improving an aspect of a computer and 

expecting a proportional improvement in 

overall performance
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◼ Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T +=

◼ Example: multiply accounts for 80s/100s

◼ How much improvement in multiply performance to 

get 5× overall?

◼ Corollary: make the common case fast
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