
 Java Au Naturel by William C. Jones 13-1 13-1

13 Sorting and Searching

Overview

This chapter discusses several standard algorithms for sorting, i.e., putting a number of
values in order. It also discusses the binary search algorithm for finding a particular
value quickly in an array of sorted values. The algorithms described here can be useful
in various situations. They should also help you become more comfortable with logic
involving arrays. These methods would go in a utilities class of methods for Comparable
objects, such as the CompOp class of Listing 7.2. For this chapter you need a solid
understanding of arrays (Chapter Seven).

• Sections 13.1-13.2 discuss two basic elementary algorithms for sorting, the

SelectionSort and the InsertionSort.
• Section 13.3 presents the binary search algorithm and big-oh analysis, which

provides a way of comparing the speed of two algorithms.
• Sections 13.4-13.5 introduce two recursive algorithms for sorting, the QuickSort and

the MergeSort, which execute much faster than the elementary algorithms when you
have more than a few hundred values to sort.

• Sections 13.6 goes further with big-oh analysis.
• Section 13.7 presents several additional sorting algorithms -- the bucket sort, the

radix sort, and the shell sort.

13.1 The SelectionSort Algorithm For Comparable Objects

When you have hundreds of Comparable values stored in an array, you will often find it
useful to keep them in sorted order from lowest to highest, which is ascending order. To
be precise, ascending order means that there is no case in which one element is larger
than the one after it -- if y is listed after x, then x.CompareTo(y) <= 0. Sometimes
you prefer to store them from highest to lowest, which is descending order (no element
is smaller than the one after it). The usual sorting problem is to write an independent
method that puts an array into ascending order.

Finding the smallest in a partially-filled array

As a warmup to a sorting algorithm, look at a simpler problem for an array of Comparable
objects: How would you find the smallest value in a given range of values in an array?

Say the parameters of the method are the array item, the first index start, and the
ending index end, where the values to search are from item[start] up through
item[end]; assume start <= end. You look at the first value: smallestSoFar =
item[start]. Then you go through the rest of the values in the array one at a time.
Whenever the current value is smaller than smallestSoFar, you store it in
smallestSoFar. So an independent class method to do this would be as follows:

 public static Comparable findMinimum (Comparable[] item,
 int start, int end)
 { Comparable smallestSoFar = item[start];
 for (int k = start + 1; k <= end; k++)
 { if (item[k].compareTo (smallestSoFar) < 0)
 smallestSoFar = item[k];
 }
 return smallestSoFar;
 } //=======================

 Java Au Naturel by William C. Jones 13-2 13-2

Say you apply this logic to the array in Figure 13.1 with start being 2 and end being 5.
The figure indicates the values by decimal numbers to make this example clearer. You
begin by noting the smallest so far is 5.0, which is the value at index 2. Next you go
through each index value from index 3 on up, stopping after processing index value 5:

• You compare item[3] to 5.0 but make no change, because item[3] is not

smaller than 5.0.
• You compare item[4] to 5.0 and assign that value 3.0 to be the smallest so far,

because item[4] is smaller than 5.0.
• You compare item[5] to 3.0 but make no change, because item[5] is not

smaller than 3.0. The end result is that you return the value 3.0 from the method.

 Figure 13.1 An array with six decimal values

Naturally this logic only works if the array has non-null Comparable values in components
2 through 5. Now try a mild modification of this logic: How would you find the smallest
value and swap it with the value at index start? It is not enough to find the smallest;
you have to find the index where the smallest is stored. The coding is very similar to that
of findMinimum:

 int indexSmallest = start;
 for (int k = start + 1; k <= end; k++)
 { if (item[k].compareTo (item[indexSmallest]) < 0)
 indexSmallest = k;
 }

Then you can swap the value at that index with the value at index start. For instance,
for the array in Figure 13.1, you would find that the index of the smallest is 4, because
that is where the 3.0 is. So you swap the value at index 4 with the value at index start:

 Comparable saved = item[start];
 item[start] = item[indexSmallest];
 item[indexSmallest] = saved;

The SelectionSort Algorithm

With this warmup, you can look at a standard method of putting all array values in
ascending order. This algorithm is the SelectionSort Algorithm. The plan is to select
the smallest of all the values and swap it into component 0. Then select the smallest of
all the values from index 1 on up and swap it into component 1. At this point you have
the two smallest values of all, in ascending order in the first two components of the array.

You next select the smallest of all the values from index 2 on up and swap it into
component 2. Now you have the three smallest values of all, in ascending order in the
first three components of the array. Next you select the smallest of all the values from
index 3 on up and swap it into component 3. This continues until you come to the end of
the values in the array. Then all of the values are in ascending order.

Figure 13.2 illustrates the sequence of steps on the array with six values, at indexes 0
through 5, from Figure 13.1. The process only needs five steps, because once the first
five are at the right index, the last one must be (do you see why?). On Step 5a, the
smallest of the two values is already at the right spot, so swapping it has no effect.

 Java Au Naturel by William C. Jones 13-3 13-3

The indexes of the six components are: 0 1 2 3 4 5
And the values stored in the array are initially: 7 12 5 8 3 6
Step 1a: Find the location of the smallest at index 0...5: ? ? ? ? �� ?

Step 1b: Swap it with the value at index 0: 3 12 5 8 7 6
Step 2a: Find the location of the smallest at index 1...5: " ? �� ? ? ?

Step 2b: Swap it with the value at index 1: " 5 12 8 7 6
Step 3a: Find the location of the smallest at index 2...5: " " ? ? ? ��
Step 3b: Swap it with the value at index 2: " " 6 8 7 12
Step 4a: Find the location of the smallest at index 3...5: " " " ? �� ?

Step 4b: Swap it with the value at index 3: " " " 7 8 12
Step 5a: Find the location of the smallest at index 4...5: " " " " �� ?

Step 5b: Swap it with the value at index 4: " " " " 8 12

 Figure 13.2 Sequence of operations for the SelectionSort

This algorithm can be expressed in just a few statements, using the coding previously
developed. We will sort a partially-filled array of Comparable values, i.e., we have a
size int value and we are only concerned with the array values indexed 0 up to but not
including size. We call swapMinToFront for start having the values 0, 1, 2, 3, etc.,
stopping when start is size-1. The logic is in Listing 13.1.

Listing 13.1 The selectionSort method for a partially-filled array, in CompOp

 /** Precondition: size <= item.length; item[0]...item[size-1]
 * are non-null values all Comparable to each other.
 * Postcondition: The array contains the values it initially
 * had but with item[0]...item[size-1] in ascending order. */

 public static void selectionSort (Comparable[] item, int size)
 { for (int k = 0; k < size - 1; k++)
 swapMinToFront (item, k, size - 1);
 } //=======================

 private static void swapMinToFront (Comparable[] item,
 int start, int end)
 { int indexSmallest = start;
 for (int k = start + 1; k <= end; k++)
 { if (item[k].compareTo (item[indexSmallest]) < 0)
 indexSmallest = k;
 }
 Comparable saved = item[start];
 item[start] = item[indexSmallest];
 item[indexSmallest] = saved;
 } //=======================

This method might be called from the WorkerList class of Section 7.6 (whose instance
variables are a partially-filled array itsItem of Worker objects and an int value
itsSize saying how many values in itsItem are useable) using this statement:

 CompOp.selectionSort (this.itsItem, this.itsSize);

 Java Au Naturel by William C. Jones 13-4 13-4

An example of an independent class method that calls on the selectionSort method
to sort 3000 randomly-chosen decimal numbers, then prints the sorting time in seconds
and returns the median value, is the following. It uses the Double methods described in
Section 11.4, though all you need to know about them for this chapter is the following:

• new Double(x) creates an object with an instance variable storing the double x,
• someDouble.doubleValue() returns the double value of the Double object, and
• the Double class implements the Comparable interface, having compareTo.

 public static double median() // independent
 { final int numToSort = 3000;
 Double[] item = new Double [numToSort];
 for (int k = 0; k < numToSort; k++)
 item[k] = new Double (Math.random());
 long t = System.currentTimeMillis();
 selectionSort (item, numToSort);
 System.out.println ((System.currentTimeMillis() - t)/1000);
 return item[numToSort / 2].doubleValue();
 } //=======================

Exercise 13.1 Revise Listing 13.1 to perform a SelectionSort on a null-terminated array:
You have only the item array parameter, no size. You are to sort all values up to the
first one that is null. Precondition: At least one component contains null.
Exercise 13.2 Revise Listing 13.1 to put the values in descending order.
Exercise 13.3* Rewrite Listing 13.1 to find the largest value each time and swap it to the
rear of the array.
Exercise 13.4* Rewrite Listing 13.1 to omit swapping when the smallest is already at the
front. Does this speed up or slow down the execution?

13.2 The InsertionSort Algorithm For Comparable Objects

The InsertionSort is another standard sorting algorithm. As a warmup, start with this
problem: If you know that the first m values in an array are already in ascending order,
but the next one (at item[m]) is probably out of order, how would you get them all in
order? The accompanying design block is a plan for the solution.

DESIGN to re-order values
1. Set the value from item[m] aside, thereby leaving an empty spot in the array.
2. Compare the value before the empty spot with the value you set aside.
 If the value before the empty spot is larger, then...
 2a. Move that value into the empty spot, so where it came from
 is now empty.
 2b. Repeat from Step 2.
3. Put the value you set aside in the empty spot.

This logic is defective: What if all of the values are larger than the one you set aside?
You have to stop when the empty spot is at the very front of the array, i.e., item[0].
Making this adjustment, the following method solves the problem.

 private static void insertInOrder (Comparable[] item, int m)
 { Comparable save = item[m];
 for (; m > 0 && item[m - 1].compareTo (save) > 0; m--)
 item[m] = item[m - 1];
 item[m] = save;
 } //=======================

 Java Au Naturel by William C. Jones 13-5 13-5

The InsertionSort Algorithm

Now that you have had a warmup, you can look at the second standard algorithm to put
the array values in ascending order. This algorithm is the InsertionSort Algorithm. The
plan is as follows (see the illustration in Figure 13.3):

1. Put the first two values in order.
2. Insert the third value in its proper place in the sequence formed by the first two.
3. Insert the fourth value in its proper place in the sequence formed by the first three.
4. Insert the fifth value in its proper place in the sequence formed by the first four.
5. Keep this up until you have them all in order.

Suppose the values stored in the array are initially: 12 7 8 5 13 6 9
Step 1: Put the first two values in order: 7 12 " " " " "
Step 2: Insert the third in order among the first two: 7 8 12 " " " "
Step 3: Insert the fourth in order among the first three: 5 7 8 12 " " "
Step 4: Insert the fifth in order among the first four: 5 7 8 12 13 " "
Step 5: Insert the sixth in order among the first five: 5 6 7 8 12 13 "
Step 6: Insert the seventh in order among the first six: 5 6 7 8 9 12 13

 Figure 13.3 Sequence of operations for the InsertionSort

You will have noticed that the logic needed for each of Steps 2, 3, 4, etc. is in the
insertInOrder method just developed. In fact, it can be used for Step 1 as well
(calling the method with m == 1). The complete InsertionSort algorithm is coded in
Listing 13.2. The precondition and postcondition are the same as for Listing 13.1.

Listing 13.2 The insertionSort method for a partially-filled array, in CompOp

 /** Precondition: size <= item.length; item[0]...item[size-1]
 * are non-null values all Comparable to each other.
 * Postcondition: The array contains the values it initially
 * had but with item[0]...item[size-1] in ascending order. */

 public static void insertionSort (Comparable[] item, int size)
 { for (int k = 1; k < size; k++)
 insertInOrder (item, k);
 } //=======================

 private static void insertInOrder (Comparable[] item, int m)
 { Comparable save = item[m];
 for (; m > 0 && item[m - 1].compareTo (save) > 0; m--)
 item[m] = item[m - 1];
 item[m] = save;
 } //=======================

Some people want to put at the beginning of the insertionSort method a test to
save time when the size is 0, beginning the coding with the phrase if (size > 0).
However, that would violate the Principle of Rara Avis: It is less efficient to speed up
execution in cases that rarely occur (i.e., cases that are "rare birds", thus the "rara avis")
if that slows down execution in the vast majority of cases.

 Java Au Naturel by William C. Jones 13-6 13-6

Contrasting the two sorting algorithms

At each call of insertInOrder, the list of values is actually two lists: The "bad list",
which is all the unsorted values indexed k and higher, versus the "good list" of sorted
values at indexes 0..k-1. Each call of insertInOrder increases by 1 the number
of items in the good list and consequently decreases by 1 the number of items in the bad
list. When the InsertionSort finishes, the entire list is the good list, i.e., it is sorted.

For the SelectionSort, the bad list is also the unsorted values indexed k and higher, and
the good list of sorted values is at indexes 0..k-1. Each call of swapMinToFront
increases by 1 the number of items in the good list and consequently decreases by 1 the
number of items in the bad list. When the SelectionSort finishes, the entire list is the
good list, i.e., it is sorted.

Both algorithms gradually transform the bad into the good, one value at a time. The way
they transform differs, but the overall effect is the same: What was originally all bad
(unsorted) is at the end all good (sorted).

The difference between them can be described this way: The SelectionSort logic slowly
selects a value (the smallest) from the bad list so it can quickly put it on the end of the
good list (by a simple swap). The InsertionSort logic quickly selects a value (the first one
available) from the bad list so it must slowly put it where it goes within the good list (by a
careful insertion process).

Loop invariants verify that the algorithms work right

A loop invariant is a condition that is true every time the continuation condition of a
looping statement is evaluated. For these two sorting algorithms, a loop invariant tells
what it means to be a "good" list:

Loop invariant for the main loop of insertionSort (any time at which the loop
condition k < size is evaluated): The values in item[0]...item[k-1] are in
ascending order and are the same values that were originally in item[0]...item[k-1].

How do we know this condition is in fact true every time k < size is evaluated? It
depends on two facts that you can easily check out:

1. The first time k < size is evaluated, k is 1, so item[0]...item[k-1] contain only

one value, so they are by definition in ascending order.
2. If at any point when k < size is evaluated, item[0]...item[k-1] are in ascending

order and are the values that were originally there, then one iteration of the loop
shifts the last few values up by one component and inserts item[k] into the place
that was vacated by the shift, immediately after the rightmost value that is less than
or equal to item[k]. So item[0]..item[k] are now in ascending order and are the
values that were originally in components 0 through k. Then, just before testing
k < size again, k is incremented, which means that the invariant condition is
again true: item[0]...item[k-1] are the original first k values in ascending order.

Once you see that both of those assertions are true, you should be able to see that
together they imply that the loop invariant is true when the loop terminates:
item[0]...item[k-1] are in ascending order and are the original first k values. But at that
point, k is equal to size, which means that item[0]...item[size-1] are in ascending order
and are the original size values. Conclusion: The insertionSort coding sorts the
values in the partially-filled array.

The same pattern of reasoning can be applied to verify that the selectionSort
coding in the earlier Listing 13.1 actually sorts the values given it:

 Java Au Naturel by William C. Jones 13-7 13-7

Loop invariant for the main loop of selectionSort (any time at which the loop
condition k < size-1 is evaluated): The values in item[0]...item[k-1] are in
ascending order and are the k smallest values that were originally in
item[0]...item[size-1].

How do we know that condition is in fact true every time k < size-1 is evaluated? It
depends on two facts that you can easily check out:

1. The first time k < size-1 is evaluated, k is zero, so item[0]...item[k-1] contain no

values at all, so they are the 0 smallest values in ascending order (vacuously).
2. If at any point when k < size-1 is evaluated, item[0]...item[k-1] are the k

smallest of the original values in ascending order, then one iteration of the loop finds
the (k+1)th smallest of the original values and puts it after the k smallest values. So
item[0]...item[k] are now in ascending order and are the k+1 smallest values that
were originally in the array. Then, just before testing k < size-1 again, k is
incremented, which means that the invariant condition is again true: item[0]...item[k-1]
are the k smallest of the original values in ascending order.

Once you see that both of those assertions are true, you should be able to see that
together they imply that the loop invariant is true when the loop terminates:
item[0]...item[k-1] are the k smallest of the original values in ascending order. But at
that point, k is equal to size-1, which means that item[0]...item[size-2] are in
ascending order and are all but the largest of the original values. Conclusion: The
selectionSort algorithm sorts the values in the partially-filled array.

As a general principle, when you have a complex looping algorithm and you want to
verify that it produces a given result under any and all conditions, proceed as follows:
Find a condition that is trivially true the first time the loop condition is evaluated, and is
"incrementally true" for the loop (i.e., if true at the time of one evaluation, it is true at the
time of the next evaluation), so you can inductively deduce that it will be true when the
loop terminates. If you have chosen the condition well, its truth when the loop terminates
will be an obvious proof that the loop produces the required result.

A game example You play a two-person game in which you are to lay out more than 40
counters and your opponent has the first move. Each move is to take 1, 2, or 3 counters.
The person who takes the last counter wins. So you are executing the loop while
(counters left) {opponent moves; you move;} whose long-term objective is
to take the last counter. You can assure this by establishing a short-term objective on
each iteration that your move leaves a multiple of 4 counters. This is the loop invariant.
So initially you choose to lay out 44 or 48 or 52... counters. For each of your moves, you
leave 4 fewer counters than you left on the turn before. Then you will win.

Exercise 13.5 Rewrite insertInOrder in Listing 13.2 to check whether the value to
be set aside is in fact smaller than the one in front of it; if not, do not set it aside. Does
this speed up or slow down the algorithm?
Exercise 13.6 Revise Listing 13.2 to perform an InsertionSort on a null-terminated array:
You have only the item parameter, no size. You are to sort all values up to the first
one that is null. Precondition: At least one component contains null.
Exercise 13.7 Revise Listing 13.2 to perform an InsertionSort on an array of doubles.
Exercise 13.8 Revise Listing 13.2 to allow for null values scattered throughout the array.
A null value is to be considered larger than any non-null value.
Exercise 13.9* Rewrite Listing 13.2 to perform the insertion from the other end of the
array. That is, put the top 2 in order, then the top 3, then the top 4, etc.
Exercise 13.10* The loop condition in insertInOrder makes two tests each time
through. Rewrite the method to execute faster by making only one test on each iteration,
as follows: If item[0] is not larger than save, have a faster loop to insert save
where it goes, otherwise have a separate loop to insert save at the front of the array.

 Java Au Naturel by William C. Jones 13-8 13-8

13.3 Big-oh And Binary Search

Why have two or more different sorting methods? Because one may be better for one
purpose and another may be better for a different purpose. We will now look at the
execution time of the two elementary algorithms you have seen so far.

Counting the comparisons made for elementary sorting

When you study the logic in Listing 13.2, you should be able to see that a call of
insertInOrder with k as the second parameter could make anywhere from 1 to k
comparisons. So if N denotes the total number of items to be sorted, the InsertionSort
could make as many as 1 + 2 + 3 + ... + (N-1) comparisons of data altogether
before it gets them all in order. That adds up to (N-1)*N/2, using basic counting
methods, i.e., almost half of N-squared. In effect, each of the N items could be
compared with each of the other (N-1) items before the sorting is done.

If you look back at the logic in the earlier Listing 13.1, you will see that the first time you
call swapMinToFront, when k is zero, you will make N-1 comparisons. The second
time you will make N-2 comparisons. This continues until k is the index of the next-to-
last value, which requires only one comparison. So the total number of comparisons is
1 + 2 + 3 +...+(N-1), i.e., (N-1)*N/2.

The (N-1)*N/2 comparisons that the InsertionSort could make is the worst case; the
average should be somewhere around one-quarter of N-squared. The SelectionSort
always takes almost one-half of N-squared comparisons, but it usually has much less
movement of data than the InsertionSort. Which is faster depends on the time for a
comparison versus the time for a movement of data, but it is usually the InsertionSort.

Both the InsertionSort and the SelectionSort are called elementary sorting algorithms.
"Elementary" means that the number of comparisons made in the process of sorting N
items is on average a constant multiple of N-squared. The multiple for InsertionSort is ¼
and the multiple for SelectionSort is ½. There are other elementary sorting algorithms;
the first one invented for computer programs was probably the one called the BubbleSort.
But it executes more slowly than the two described here. A SelectionSort variation,
based on finding both the maximum and the minimum on each pass through the data, is
described in the appendix of major programming projects; its multiple is 3/8.

The technical way of saying this is that the big-oh behavior of elementary sorts is N-
squared, where N is the number of items to be sorted. It means that, if it takes X amount
of time to sort a certain number of items, then it takes roughly 4X amount of time to sort
twice as many items, and it takes roughly 100X amount of time to sort ten times as many
items, at least if X is fairly large. In general, the amount of time to do the job is roughly
proportional to the square of the number of items to be processed, for large values of N.

To see this, suppose you have a processor that takes 1 second to sort 1000 items. That
1 second is what you need for roughly M times 1 million comparison operations, where M
is the multiplier for the elementary sort (M == ¼ for the InsertionSort, M == ½ for the
SelectionSort) and 1 million is the square of 1000. To sort 2000 items requires M times 4
million comparisons, which is four times as long as for sorting 1000 items. To sort 10,000
items requires M times 100 million comparisons, which is 100 times as long as for sorting
1000 items.

In particular, it would take a thousand-squared seconds to sort one million items, which is
over eleven days. This is not practical. The next two sections discuss far faster
algorithms for sorting, on the order of big-oh of N times log(N). But first we look at an
algorithm for searching an array and its execution time.

 Java Au Naturel by William C. Jones 13-9 13-9

Binary Search

A key algorithm for searching an array for a target value when the array is already sorted
in ascending order is called Binary Search. The logic of a Binary Search Algorithm to
find whether the target value is present is: The target value, if it is in the array, must be in
the range from the lowerBound of 0 to the upperBound of size-1, inclusive. First
look at the value at the middle component item[midPoint]. If that is less than the
target value, the target can only be above that component, because the values are sorted
in ascending order; so the revised lowerBound is midPoint+1. On the other hand, if
item[midPoint] is not less than the target value, the target must be in the range from
lowerBound to midPoint, inclusive; so the revised upperBound is midPoint.

Whichever of the two cases apply, you have cut the number of possibilities about in half.
This process can be repeated until lowerBound is equal to upperBound. At that point,
the target value must be in the only component in that range, if it is in the array at all.

Figure 13.4 illustrates a search for the value 40 in an ordered array of 16 values. Initially
lowerBound is 0 and upperBound is 15 (listed in the first two columns), so midPoint
is 7 (in the third column). 40 is greater than item[7] (boldfaced in the figure) so we set
lowerBound to 8. Now midPoint is 11 and 40 is not greater than item[11], so we
set upperBound to 11. This continues until we isolate the value in item[10].

lB uB m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 15 7 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
8 15 11 36 38 40 42 44 46 48 50
8 11 9 36 38 40 42
10 11 10 40 42
10 10 40

 Figure 13.4 Finding the value 40 in an array of 16 values

This logic expressed in Java is in Listing 13.3. The coding includes an extra test to make
sure size is positive before beginning the subdivision process.

Listing 13.3 The binarySearch method for an ordered partially-filled array

 /** Precondition: item[0]...item[size-1] are all non-null,
 * in ascending order, and Comparable with target.
 * Returns: whether target is one of the array values. */

 public static boolean binarySearch (Comparable[] item,
 int size, Comparable target)
 { if (size <= 0) //1
 return false; //2
 int lowerBound = 0; //3
 int upperBound = size - 1; //4
 while (lowerBound < upperBound) //5
 { int midPoint = (lowerBound + upperBound) / 2; //6
 if (item[midPoint].compareTo (target) < 0) //7
 lowerBound = midPoint + 1; //8
 else //9
 upperBound = midPoint; //10
 } //11
 return item[lowerBound].equals (target); //12
 } //=======================

 Java Au Naturel by William C. Jones 13-10 13-10

Counting the comparisons made for BinarySearch

If the number of items to be searched is 1000, then you only need eleven comparisons to
find out whether the target value is in the array. This is because, when you start from
1000 and repeatedly divide by 2, you reduce it to just one possibility in only 10 iterations;
the eleventh comparison is to find out whether that one possibility is the target value.

The number of times you divide a number by 2 to get it down to 1 is its logarithm base 2
(more precisely, it is the logarithm after rounding up if needed). Call this rounded-up
number log2(N). log2(1000) is 10, so binary search of a thousand items only
requires 11 comparisons. Similarly, log2(1,000,000) is 20, so binary search of a
million items only requires 21 comparisons. And log2(1,000,000,000) is 30, so
binary search of a billion items only requires 31 comparisons. Note that in Java, log2(N)
is the same as Math.ceil (Math.log(N) / Math.log(2)).

The big-oh

In general, if N is the number of items to be searched, then the Binary Search Algorithm
requires log2(N)+1 comparisons to find out whether a particular target value is there.
The technical way of saying this is that the big-oh behavior of binary search is log(N),
where N is the number of items to be searched. It means that the amount of time to do
the job is roughly proportional to the logarithm of the number of items to be processed,
for large values of N. A useful loop invariant for the binarySearch method is the following:

Loop invariant for the one loop in binarySearch (any time at which the loop
condition lowerBound < upperBound is evaluated): The target value is in
item[lowerBound]...item[upperBound] or else is not in the array at all.

By contrast, the sequential search algorithm that you have seen many times before
looks at potentially every element in the list. The big-oh behavior of sequential search
is N: the amount of time to do the job is roughly proportional to the number of items to be
processed, for large values of N.

Exercise 13.11 The binarySearch logic divides the possibilities up into two parts,
but they are not always the same size. When is one part larger by one item? Which part
of the array is larger in that case, the front or the rear half?
Exercise 13.12 Explain what Exceptions could be thrown, and when, if the initial
statement testing size were omitted from the coding of binarySearch.
Exercise 13.13 A method makes a copy of an array parameter by creating a new array
of the same size and assigning each value in the given array to the new array. What is
the big-oh execution time for this method?
Exercise 13.14 (harder) In the binarySearch method, what would be the
consequence of rounding off midPoint in the other direction from what is done in
Listing 13.3 (i.e., what Exceptions could be thrown or other problems occur)?
Exercise 13.15* Rewrite the binarySearch method to check to see whether
item[midPoint] actually equals the target value each time and, if so, to stop the
process early. Then explain why this slows execution on average.
Exercise 13.16* Revise the binarySearch method to return an int value: Return the
index where the target was found, except return a negative int -n-1 if the target is not
in the array (n is the index where target should be inserted to keep all values in order).
Exercise 13.17** Write a binarySearch method for a null-terminated array with
execution time big-oh of log(L) where L is the length of the array.
Exercise 13.18** Write out logical reasoning to verify that the loop invariant for
binarySearch is trivially true at the first test and incrementally true for each iteration.

 Java Au Naturel by William C. Jones 13-11 13-11

Part B Enrichment And Reinforcement

13.4 The Recursive QuickSort Algorithm For Comparable Objects

People have made attempts to improve on the speed of the elementary sorting
algorithms of SelectionSort and InsertionSort. One idea is the QuickSort logic, which the
accompanying design block describes, assuming you create a QuickSorter object whose
job it is to sort the elements of an array.

DESIGN for the sorting logic of a QuickSorter object
If you have at least two elements to sort in ascending order, then...
 1. Choose one of the elements of the array at random; call it the pivot.
 2. Move everything smaller than the pivot towards the front of the array.
 3. Move everything larger than the pivot towards the rear of the array.
 4. Put the pivot in the component between those two groups of elements.
 5. Sort the values before the pivot.
 6. Sort the values after the pivot.

Why this is almost always faster

Let us compare this logic with that of the InsertionSort. Say you find insertionSort
takes 800 milliseconds to sort 2000 items using a particular processor. Since it makes
1999 passes through the data, calling insertInOrder each time, the calls of
insertInOrder take 0.4 milliseconds each on average. The average call of
insertInOrder inserts a value into about 1000 items and makes about 500
comparisons to do so. Therefore, since steps 1 through 4 of the QuickSort logic make
1999 comparisons, that must take under 2 milliseconds.

Suppose that steps 5 and 6 called insertionSort instead of using another QuickSort
logic, once for the half that are smaller than the pivot and once for the half that are larger.
Then each call would take about 200 milliseconds, one quarter of the 800 milliseconds
for sorting 2000, since the execution time of insertionSort is roughly proportional to
the square of the number of items sorted. So altogether the QuickSort logic would take
2+200+200 = 402 milliseconds instead of 800 milliseconds. And that is assuming it
switches to the insertionSort logic for steps 5 and 6. If it continued with the
QuickSort logic, the improvement in speed would be far greater.

You probably noticed a big IF in that logic: If the pivot turns out to divide the values
roughly in half, it almost doubles the speed. But the pivot is chosen at random, so it may
be very close to one end or the other of the range of values. That would make the
execution time much the same as the InsertionSort.

This is the drawback to the QuickSort: If the pivot is one of the five or so smallest values,
or one of the five or so largest values, the vast majority of the time the pivot is chosen,
then the QuickSort can take a little longer than the InsertionSort. But that is extremely
rare for randomly-ordered data. The QuickSort will almost always drastically speed up
the sorting process relative to the InsertionSort. An exercise has you implement a "tune-
up" in which you select the middle of three values taken from the bottom, the top, and
the middle of the array. This virtually guarantees a drastic speed-up.

 Java Au Naturel by William C. Jones 13-12 13-12

Recursion

A single method may be called many times at different points during the execution of the
program. Each of these calls is a different activation of the method. The runtime
system records information about each activation in separate "method objects" that it
creates and discards during execution of the program. You must keep this point firmly in
mind when thinking about recursion: A method is allowed to contain a call of itself. The
QuickSort logic described earlier requires the use of recursion.

As an example of recursion, the insertionSort method could have been written
recursively as follows (though we normally do not do this where a simple for-statement
accomplishes the same thing):

 public static void insertionSort (Comparable[] item, int size)
 { if (size > 1)
 { insertionSort (item, size - 1); //recur
 insertInOrder (item, size - 1);
 }
 } //=======================

For that matter, the selectionSort method could have been written recursively if we
had chosen to have a swapMaxToRear method that swaps the largest value to the rear
of the array instead of a swapMinToFront method that swaps the smallest value to the
front of the array:

 public static void selectionSort (Comparable[] item, int size)
 { if (size > 1)
 { swapMaxToRear (item, 0, size - 1);
 selectionSort (item, size - 1); //recur
 }
 } //=======================

Say you want to print out all the 6-digit binary numbers (all 64 of them). Then a call of
printBinary ("", 6) does the job if you have method shown in Listing 13.4. Study
it for a while to see that it prints out every binary number that has numDigits digits,
each one prefixed by the given String prefix:

Listing 13.4 The independent printBinary method

 /** Print every binary number of numDigits digits. */

 public static void printBinary (String prefix, int numDigits)
 { if (numDigits <= 1)
 System.out.println (prefix + "0\n" + prefix + "1");
 else
 { printBinary (prefix + "0", numDigits - 1); //recur
 printBinary (prefix + "1", numDigits - 1); //recur
 }
 } //=======================

If you try to do that with a while-statement, it will not be nearly as compact and clear. In
the three methods just given, each expression that makes a recursive call has this
hallmark property:

(a) it is guarded by a test that a certain variable, called the recursion-control variable,

is greater than a certain cutoff amount, and
(b) it passes to the new activation a value of the recursion-control variable that is at least

1 smaller than the existing activation has.

 Java Au Naturel by William C. Jones 13-13 13-13

In the three examples just given, the expression that makes the recursive call is marked
//recur out at the side:

• For insertionSort, the recursion-control variable is size and its cutoff is 1.
• For selectionSort, the recursion-control variable is size and its cutoff is 1.
• For printBinary, the recursion-control variable is numDigits and its cutoff is 1.

In some applications of recursion, the coding itself does not declare a variable specifically
as the recursion-control variable. But any coding that uses recursion properly will involve
a quantity that could be assigned to a recursion-control variable if need be.

Of course, it is possible to write recursive coding that falls into an "infinite loop" because it
does not have a recursion-control variable. But then again, it is also possible to write a
while-statement that falls into an "infinite loop" because it does not have an "iteration-
control variable" that eventually reaches a certain cutoff and terminates the loop.

It is the recursion-control variable and the cutoff value that guarantee that recursion does
not go on forever. Think of each activation of the method as being a certain height above
the floor. The recursion-control variable measures the height above the floor. Each time
you step from one activation to another, the height drops. When you spiral down to the
floor (the cutoff value), the recursion stops. In short, a correctly coded recursion process
does not go in circles, it goes in spirals.

Object design

A reasonable approach is to create a QuickSorter object, giving it the array that contains
the values to be sorted. Then you can ask it to sort one part or another part of the array.
So the primary message sent to a QuickSorter object should be as follows, where
start and end are the first and last indexes of the part of the array to be sorted:

 someQuickSorter.sort (start, end);

The object responds to the sort message by first making sure that it has at least two
values to sort, i.e., that start < end. If so, it rearranges the values around the pivot,
then creates another QuickSorter object, its helper, to sort each half. Since the
rearranging is rather complex, you could put it off to some other method, which will "split"
the array in two and report the index where the pivot was put. That leads to the following
basic coding for the sort method:

 int mid = this.split (start, end);
 helper.sort (start, mid - 1);
 helper.sort (mid + 1, end);

The split method is to split the sortable portion of the array into two parts, those
below index mid that are smaller than the pivot, and those above index mid that are
larger than the pivot. The QuickSorter object's helper then sorts each part separately.
This overall logic is illustrated in Figure 13.5.

1. The initial array 7 12 5 10 3 6 8
2. Remove the pivot 7 X 12 5 10 3 6 8
3. Split, smaller below, larger above 6 3 5 X 10 12 8
4. Put the pivot back in the middle 6 3 5 7 10 12 8
5. Sort the ones smaller than 7 3 5 6 7 10 12 8
6. Sort the ones larger than 7 3 5 6 7 8 10 12

Figure 13.5 The overall logic of the QuickSort

 Java Au Naturel by William C. Jones 13-14 13-14

Development of the split method

Splitting the portion of the array in parts smaller than and larger than a pivot value is
tricky. Call the lowest and highest indexes for the range lo and hi. They are
initialized to the start and end values, but lo and hi will change during the logic
whereas start and end will stay their original values. So it will be less confusing to
have different names.

Take the pivot value from itsItem[lo] (an exercise improves this to a random choice;
then the algorithm is called randomized QuickSort). That leaves the component empty.
What should go there at the lower part of the array? An element that is smaller than the
pivot. And where should you take it from? From where it should not be, namely, the
higher part of the array. So look at itsItem[hi] to see if that is smaller than the
pivot. Say it is not. Then itsItem[hi] is in the right place, so decrement hi and
look at itsItem[hi], which is the one below the original hi one. Say that one is
smaller than the pivot. So you move the contents of itsItem[hi] down to the empty
spot itsItem[lo], which leaves itsItem[hi] empty.

What should go into itsItem[hi], in the higher part of the array? An element that is
larger than the pivot. And where should you take it from? From where it should not be,
namely, the lower part of the array. You start looking at itsItem[lo+1]. So you
increment lo to keep track of the position in the lower part of the array. Keep
incrementing lo until you get to a component that has a larger value than the pivot.
Move that value up into the empty spot at itsItem[hi]. Then go back to looking in
the higher part of the array for a value to move into the now-empty spot itsItem[lo].

You actually do not need multiple QuickSorter objects; just one can do the entire job
itself. Listing 13.5 (see next page) makes this adjustment, which speeds up execution.
Study the complete coding in Listing 13.5 until you understand everything about it.

It keeps track of whether you are looking in the higher part of the array (versus the lower
part) with a boolean variable lookHigh (line 7). When lookHigh is true, you are
decrementing hi in the higher part of the array until you find a smaller value than the
pivot, which you then move into the empty itsItem[lo] (line 13). When lookHigh is
false, you are incrementing lo in the lower part of the array until you find a larger value
than the pivot, which you then move into the empty itsItem[hi] (line 21).

This coding uses a language feature not used in any other chapter: The phrase
itsItem[lo++]= in line 13 assigns a value to itsItem[lo] and thereafter
increments lo. In general, the value of the expressions x++ and x-- is the value
that x had before it incremented or decremented. Thus itsItem[hi--] in line 21
assigns a value to itsItem[hi] and thereafter decrements hi. If you use this
shorthand feature, follow this safety rule: Never use it in a statement that mentions the
incremented/decremented variable (lo or hi or whatever) more than once. The
reason is that its value is very tricky to figure out in such a case.

The loop invariant

When lo and hi coincide, you have found the empty spot where the pivot should go.
You can verify that the loop in the split method does what it should do by checking
that the following statement is a loop invariant:

Loop invariant for the while loop in split (any time the loop condition lo < hi
is evaluated): No value from start through lo-1 is larger than the pivot and no
value from hi+1 through end is smaller than the pivot. Also, itsItem[lo] is
"empty" if lookHigh is true, but itsItem[hi] is "empty" if lookHigh is false.

 Java Au Naturel by William C. Jones 13-15 13-15

Listing 13.5 The QuickSort Algorithm for a partially-filled array

// a method in the CompOp class; same conditions as Listing 13.1
 public static void quickSort (Comparable[] item, int size)
 { new QuickSorter (item).sort (0, size - 1);
 } //=======================

public class QuickSorter
{
 private Comparable[] itsItem; // the array to be sorted

 public QuickSorter (Comparable[] item)
 { itsItem = item;
 } //=======================

 /** Precondition: start <= end; itsItem[start]...itsItem[end]
 * are the Comparable values to be sorted. */

 public void sort (int start, int end)
 { if (start < end) //1
 { int mid = split (start, end); //2
 sort (start, mid - 1); //3
 sort (mid + 1, end); //4
 } //5
 } //=======================

 private int split (int lo, int hi)
 { Comparable pivot = itsItem[lo]; //6
 boolean lookHigh = true; //7
 while (lo < hi) //8
 { if (lookHigh) //9
 { if (itsItem[hi].compareTo (pivot) >= 0) //10
 hi--; //11
 else //12
 { itsItem[lo++] = itsItem[hi]; //13
 lookHigh = false; //14
 } //15
 } //16
 else //17
 { if (itsItem[lo].compareTo (pivot) <= 0) //18
 lo++; //19
 else //20
 { itsItem[hi--] = itsItem[lo]; //21
 lookHigh = true; //22
 } //23
 } //24
 } //25
 itsItem[lo] = pivot; //26
 return lo; //27
 } //=======================
}

By "empty" we mean that you may overwrite that value without losing any value that was
in the original portion of the array to be sorted. In Figure 13.6, the X marks the
component that is "empty". The positions of lo and hi after the action described at
the left of Figure 13.6 are boldfaced so you can track their movements. On each iteration
of the loop, one or the other moves one step closer to the middle.

 Java Au Naturel by William C. Jones 13-16 13-16

Initially lo=20 and hi = 26: 20 21 22 23 24 25 26
The array values are: (boldfaced at lo and at hi) 7 12 5 10 3 6 8
First: Take the pivot from index lo, so pivot is 7: X 12 5 10 3 6 8
Iteration 1: lookHigh is true but itsItem[hi]>pivot so hi--: X 12 5 10 3 6 8
Iteration 2: lookHigh is true, itsItem[hi]<pivot so move: 6 12 5 10 3 X 8
Iteration 3: lookHigh is false, itsItem[lo]>pivot so move: 6 X 5 10 3 12 8
Iteration 4: lookHigh is true, itsItem[hi]<pivot so move: 6 3 5 10 X 12 8
Iteration 5: lookHigh is false, itsItem[lo]<pivot so lo++: 6 3 5 10 X 12 8
Iteration 6: lookHigh is false, itsItem[lo]>pivot so move: 6 3 5 X 10 12 8
Now lo == hi, so X marks the spot where pivot goes: 6 3 5 7 10 12 8

 Figure 13.6 Sequence of operations for the split method

The split method in the QuickSort logic can be used to solve a problem that arises in
practice from time to time: Given a large number of values in an array, find the Kth
smallest, e.g., the 575th smallest or the 2300th smallest. Once you split the array to find
the correct position of the pivot, you calculate whether that position is above or below the
Kth position. Then you re-split the one part of the array that contains the Kth position.
This QuickSelect problem is left as a major programming project.

Language elements
For any int variable k, k++ has the value that k had before it was incremented. Similarly, k--
evaluates as the value k had before it was decremented. So if k is 4, then k++ is 4 and k-- is 4.
On the other hand, ++k yields the value k had after incrementing and --k yields the value that k
had after decrementing. Examples: If k is 4, then ++k is 5 and --k is 3.
This compactness comes with an increased risk of getting the logic wrong.
It is most dangerous if you mention k anywhere else in the same statement.

Exercise 13.19 Trace the action of the split method on the sequence {7, 2, 9, 1, 5,
8, 4} in the way shown in Figure 13.6.
Exercise 13.20 Revise the QuickSorter class to put values in descending order rather
than in ascending order.
Exercise 13.21 What is the sequence of all pivot values used by all calls of quickSort
if the initial call is for the sequence {4, 1, 8, 3, 9, 5, 6, 2, 7}. Hint: There are five of them.
Exercise 13.22 What difference would it make if you replaced ">= 0" by "> 0" and
replaced "<= 0" by "< 0" in the split method?
Exercise 13.23 (harder) (a) Rewrite the split method to take the pivot from index
hi instead of index lo. (b) Same problem, but take it from a random index lo to hi.
Exercise 13.24 (harder) Explain why the loop invariant is trivially true at the first test of
the loop condition.
Exercise 13.25* Explain why the loop invariant is incrementally true for each iteration.
Exercise 13.26* What difference would it make if the >= and <= operators were
replaced by > and < respectively in the split method?
Exercise 13.27* Rewrite the quickSort and sort methods so that the sort
method is never called when there are less than two items to sort. Is this more efficient?
Exercise 13.28* Rewrite the split method to find a pivot value that is much more
likely to be close to the middle, as follows: Compare the three values at indexes lo,
hi, and (lo+hi)/2. Whichever of them is between the other two is to be the pivot.
Exercise 13.29* Write an InsertionSorter class of objects analogous to QuickSorter.
This would allow people to use the InsertionSort logic for any subsequence of an array,
not just starting from zero. Extra credit: Revise QuickSorter to call an InsertionSorter
object to do the sorting when it is given 10 items to sort or less.
Exercise 13.30** Rewrite the split method so that the body of the while-statement
contains two additional while-statements, one whose only subordinate statement is hi++
and the other whose only subordinate statement is lo--. This lets you eliminate the
lookHigh variable entirely. Does this re-coding make it execute faster or slower?

 Java Au Naturel by William C. Jones 13-17 13-17

13.5 The Recursive MergeSort Algorithm For Comparable Objects

The irritating thing about the QuickSort algorithm is that it is unreliable. The vast majority
of the time, it executes faster than the InsertionSort for a large number of values. But in
rare cases it is not significantly faster. The key to the problem is that the pivot value does
not always divide the group of values to be sorted in two equal parts. The MergeSort
algorithm presented in this section avoids this problem yet executes about as fast.

Putting a mostly sorted group in order

For a warmup, consider this problem: Somewhere in the item array is a sequence of
values. The first half of them are in ascending order and the second half of them are also
in ascending order. Your job is to rearrange this sequence so that they are all in
ascending order.

This could be very messy, swapping values all around, except for one thing: You get to
have another array to put the values in as you sort them. That makes it so much easier.
Look at a picture to see what is going on: The upper array in Figure 13.7 has two sub-
sequences of four values, each sequence in ascending order. The lower array shows
what the result of the process should be.

 Figure 13.7 Problem: Move the 8 values into spare in ascending order

There are really only two decent ways to go about solving this problem -- working from
smallest to largest or vice versa. The accompanying design block describes the former.
The key point is that the smallest of all of the values must be either the first (smallest)
value in the lower half or the first (smallest) value in the higher half. Compare these two
values. Whichever is smaller, put that one in the first available spot in the spare array
and move on to the one after it in its subsequence.

STRUCTURED DESIGN for merging two ascending sequences
1. Set lo to be the first index of the lower group of ordered values.
2. Set hi to be the first index of the higher group of ordered values.
3. Compare the values at lo and hi in the item array to see which is smaller.
4. If the one at hi is smaller, then..
 4a. Move the one at hi to the next available spot in the spare array
 and increment hi.
5. Otherwise...
 5a. Move the one at lo to the next available spot in the spare array
 and increment lo.
6. Repeat from Step 3 until you have put all the values into the spare array.

Suppose you have end store the highest index value that hi can have, and have mid
store the highest index value that lo can have (because it is in the middle of the portion
to be sorted). In Figure 13.7, for instance, mid is 24 and end is 28. Then the
following coding is a translation of the design. The conditional test is complex because
you cannot compare item[lo] with item[hi] unless you make sure that lo has
not yet gone past mid and that hi has not yet gone past end. Study the condition so
you can see why it works.

 Java Au Naturel by William C. Jones 13-18 13-18

 for (int spot = lo; spot <= end; spot++)
 { if (lo > mid || (hi <= end
 && item[lo].compareTo (item[hi]) > 0))
 spare[spot] = item[hi++];
 else
 spare[spot] = item[lo++];
 }

For Figure 13.7, spot and lo are initially 21 and hi is initially 25. Compare 4 and 3.
Since 3 is smaller, the 3 from item[25] moves into spare[21] and hi is increased
to 26. Next compare 4 and 6. Since the 4 is smaller, the 4 from item[21] moves into
spare[22] and lo is increased to 22. The rest of this example is left as an exercise.

Loop invariant for the for-loop in the merging process (any time when the loop
condition spot <= end is evaluated): If start is the original value of lo, then
all values in the spare array from index start through index spot-1 are the
spot-start smallest of the values that are in item[start] through
item[end], in ascending order.

The MergeSort logic

The idea behind the MergeSort is that you divide the range of values to be sorted into two
exactly equal parts (or with a difference of 1 if you have an odd number of values). First
you sort the first half, next you sort the second half, and finally you merge the two halves
together as one long sequence in ascending order.

Why is this so much faster than the InsertionSort logic? Say the InsertionSort takes 800
milliseconds to sort 2000 items and you decide to do a MergeSort but sort the two halves
with the InsertionSort logic. Then, as explained earlier, the InsertionSort will take about
200 milliseconds to sort the first 1000 items, and about 200 milliseconds to sort the
second 1000 items, and the MergeSort will take about 2 milliseconds to merge them into
another array in order. Total execution time is 402 milliseconds, barely more than half as
long as using the InsertionSort for all the sorting. And if the MergeSort logic is used to
sort each of the two halves, that speeds it up far far more.

This logic does not have the disadvantage that the QuickSort has of sometimes
degenerating into an elementary sorting algorithm. But it has a different disadvantage: It
requires a second array to get the job done.

The object design

The obvious object design for the MergeSort algorithm is about the same as for the
QuickSort except you have to make allowance for the second (spare) array. You need
the following method in CompOp, to be consistent with the other sorting algorithms:

 public static void mergeSort (Comparable[] item, int size)
 { Comparable[] spare = new Comparable [item.length];
 new MergeSorter (item, spare).sort (0, size - 1);
 } //=======================

How does the MergeSorter object sort the values? It first checks that it has at least two
values to sort, since otherwise it does not need to take any action. If it has at least two
values, it creates another MergeSorter object as a helper to sort each half of the array
separately. Then it executes the merge logic discussed previously to merge the two
sorted halves together. The logic apparently goes something like this:

 Java Au Naturel by William C. Jones 13-19 13-19

 int mid = (start + end) / 2;
 helper.sort (start, mid);
 helper.sort (mid + 1, end);
 this.merge (start, mid, mid + 1, end);

But now you have a problem. Since the executor is to leave the values in itsItem
array, it should merge them from itsSpare array into itsItem array. That means
that its helper should leave each of its sorted halves in itsSpare array. So some
MergeSorter objects leave the values they sort in itsItem and others leave them in
itsSpare. You need some way of telling a MergeSorter object which one it is to do.

The solution, given in Listing 13.6 (see next page), is to have two sort methods, one for
sorting into itsItem array (lines 1-6) and one for sorting into itsSpare array (lines
7-14). A MergeSorter object that is to sort into itsItem array tells its helper to sort into
itsSpare array so it can merge the two halves back into itsItem. That helper will tell
its own helper to sort into itsItem array so it can merge the two halves into
itsSpare. This is indirect recursion -- The sort method does not call itself directly,
it calls the sortToSpare method which calls the sort method.

When a MergeSorter object gets back the two sorted halves, it calls the merge method
(lines 15-21). That method's first parameter is the array the values are coming from and
its second parameter is the array the values are going into. Some MergeSorter objects
pass itsItem to the first parameter and others pass itsSpare to the first
parameter.

You actually do not need multiple MergeSorter objects; just one will do. Instead of having
a helper, a MergeSorter object does the whole job itself. The coding in Listing 13.6
makes this adjustment, which speeds up execution. You should study the complete
coding in Listing 13.6 until you understand everything about it.

Faster sorting with the MergeSort

Every iteration of the loop in the merge method makes four tests, until one of the two
halves runs out of values. It would execute faster if it could make just two tests. A nice
way to do this is to sort the first half in increasing order and the second half in decreasing
order. Then to merge the two halves of this "rise-then-fall" sequence, lo increments
from start towards the middle and hi decrements from end towards the middle,
similar to what happens in the QuickSort logic. When they meet, the loop stops. The
following is the resulting merge method, making only two tests on each iteration:

 private void merge (Comparable[] from, Comparable[] into,
 int lo, int hi)
 { int spot = lo;
 while (lo < hi)
 into[spot++] = from[lo].compareTo (from[hi]) > 0
 ? from[hi--] : from[lo++];
 into[spot] = from[lo];
 } //=======================

Of course, now you have to also write a mergeDown method for merging the same kind
of "rise-then-fall" sequence in descending order. And you need two additional methods
sortDown and sortToSpareDown that call on the mergeDown method, unless you
add a boolean parameter to each of sort and sortToSpare to select the right
merging method. But still, it will execute moderately faster than the simple MergeSort
algorithm. This is left as a major programming project.

 Java Au Naturel by William C. Jones 13-20 13-20

Listing 13.6 The MergeSort Algorithm for a partially-filled array

public class MergeSorter
{
 private Comparable[] itsItem; // the array to be sorted
 private Comparable[] itsSpare; // spare to facilitate sorting

 public MergeSorter (Comparable[] item, Comparable[] spare)
 { itsItem = item;
 itsSpare = spare;
 } //=======================

 public void sort (int start, int end)
 { if (start < end) //1
 { int mid = (start + end) / 2; //2
 sortToSpare (start, mid); //3
 sortToSpare (mid + 1, end); //4
 merge(itsSpare, itsItem, start, mid, mid + 1, end); //5
 } //6
 } //=======================

 private void sortToSpare (int start, int end)
 { if (start >= end) //7
 itsSpare[start] = itsItem[start]; //8
 else //9
 { int mid = (start + end) / 2; //10
 sort (start, mid); //11
 sort (mid + 1, end); //12
 merge(itsItem, itsSpare, start, mid, mid + 1, end); //13
 } //14
 } //=======================

 private void merge (Comparable[] from, Comparable[] into,
 int lo, int mid, int hi, int end)
 { for (int spot = lo; spot <= end; spot++) //15
 { if (lo > mid || (hi <= end //16
 && from[lo].compareTo (from[hi]) > 0)) //17
 into[spot] = from[hi++]; //18
 else //19
 into[spot] = from[lo++]; //20
 } //21
 } //=======================
}

Another speed-up is for the merge method to see whether the highest value in the
lower group is less than the lowest value in the upper group and, if so, skip the merging.
This executes much faster for nearly-sorted lists. It is also left as a major programming
project.

 Java Au Naturel by William C. Jones 13-21 13-21

Non-recursive merge sort

The sequence of actions of the merge sort on a set of 16 data values is as follows. From
this description you can probably see how it can be coded non-recursively:

1. Copy values 0 and 1 into the spare array, swapping if needed. Do the same for

values 2 and 3, then for values 4 and 5, then for values 6 and 7, then values 8 and 9,
then values 10 and 11, then values 12 and 13, then values 14 and 15.

2. Merge values 0 and 1 with values 2 and 3 back into itsItem. Do the same for
merging values 4 and 5 with values 6 and 7, then for values 8...11, then for values
12...15.

3. Merge values 0...3 with values 4...7 into the spare array; then merge values 8...11
with values 12...15 into the spare array.

4. Merge values 0...7 with values 8...15 from the spare array into itsItem.

These 16 values ended up back in the itsItem array as they should. If you had
anywhere from 9 to 16 values to sort, you would sort by 2s into the spare array, then
merge groups of 4 into itsItem (the last group may be smaller), then merge groups of
8 into the spare array (the last group may be smaller), then all of them back into
itsItem. If you had anywhere from 33 to 64 values to sort, two extra passes would
leave the data values in the itsItem array also.

If you had anywhere from 17 to 32 values to sort, this process would leave you in the
wrong array. You can avoid the extra copying pass by making the first pass consist of
swapping each pair of out-of-order values with each other in the itsItem array. Then
the second pass merges groups of 4 into the spare array, etc. In general, you do this
swapping-in-place when the number N of values to sort has log2(N) an odd number.
That is, (int) Math.ceil (Math.log(N) / Math.log(2)) % 2 is 1.

Exercise 13.31 Write out a complete trace of the merge action for Figure 13.7.
Exercise 13.32 (harder) Revise Listing 13.6 to omit the sortToSpare method.
Instead, pass an extra boolean parameter to sort that tells whether the data should
end up in itsItem or in itsSpare. Is this an improvement? Why or why not?
Exercise 13.33 (harder) The MergeSort logic works faster if you handle the sorting of
just one or two values separately and straightforwardly. Insert coding into Listing 13.6 to
do this; begin with if (start + 1 >= end), since that condition tells you when there
are one or two values.
Exercise 13.34 (harder) Suppose mergeSort is called for an array of 8 data values.
What are the values of the indexes start and end on each of the 15 calls of sort
or sortToSpare? List them in the order they occur.
Exercise 13.35* Rewrite Listing 13.6 to omit the sortToSpare method. Instead,
merge from itsItem into itsSpare and then copy all the sorted values back into
itsItem.
Exercise 13.36* Essay: How much does the modification described in the previous
exercise slow the execution of the algorithm? Work it out as a formula.
Exercise 13.37* Rewrite the merge method in Listing 13.6 to have the loop execute
only as long as lo <= mid && hi <= end. Then clean up whatever is left after that
loop. This reduces the number of tests per iteration from four to three.
Exercise 13.38* Rewrite Listing 13.6 to have two kinds of MergeSorter objects, one
merging into itsItem and the other merging into itsSpare.
Exercise 13.39*** Rewrite the MergeSort logic to work without using recursion, as
indicated by the discussion at the end of this section.
Exercise 13.40*** Rewrite the QuickSort logic to work without using recursion.

 Java Au Naturel by William C. Jones 13-22 13-22

13.6 More On Big-Oh

Question: How many comparisons does the MergeSort Algorithm make when there are
N values to sort? Answer: First note that the body of the for-loop of merge executes
exactly once for each value to be sorted. The MergeSorter object created by the
mergeSort method gets N values to sort, so the if-condition in its merge method
executes N times. The last time, the compareTo method is not evaluated, and
perhaps some other times as well, so at most N-1 comparisons are made.

The initial call of sort by the mergeSort method includes two "second-level" calls of
sort , one on each half of the data, so those calls get N/2 values to sort the first time
and the rest of the N values the second time, so the if-condition in the merge method
called by those two calls of sort executes N/2 + (N-N/2) times, a total of N
times. The last time for each call, the compareTo method is not evaluated, and
perhaps some other times as well, so at most N-2 comparisons are made. Similarly,
the four "third-level" calls of sort with either N/4 or N/4+1 elements to sort evaluate
the if-condition N times but make a total of at most N-4 comparisons.

If say there are 32 values to sort altogether, we have calculated a total of 31+30+28
comparisons so far. The 8 "fourth-level" calls of sort make at most 3 comparisons
each and the 16 "fifth-level" calls of sort make at most 1 comparison each. The total
is at most 31+30+28+24+16 = 32*5-31 comparisons. In general, at most
N*log2(N)-N+1 comparisons are made to get N values sorted in ascending order,
where log2(N) is the number of times you divide N by 2 to reduce it to 1 or less.

The technical way of saying this is that the big-oh behavior of MergeSort is N*log(N),
where N is the number of items to be sorted. It means that the amount of time to do the
job is roughly proportional to the number of items processed multiplied by the logarithm of
the number of items processed, for large values of N.

If we define compMS(N) to be the maximum number of comparisons the MergeSort
requires to sort N values, then compMS(N) can be calculated as N-1 plus the number
required to sort N/2 values (one half) plus the number required to sort N-N/2 values (the
other half). Since no comparisons are required to sort just 1 value, the compMS function
is defined by the following recurrence equations:

 compMS(N) = (N-1) + compMS(N/2) + compMS(N - N/2) for N > 1
 compMS(1) = 0

A concrete example

If a particular processor requires 0.01 seconds to sort 100 items using an InsertionSort, it
will take about 10,0002 times as long to sort a million items, because 1 million is 10,000
times as much and the InsertionSort algorithm is big-oh of N2. That is 1 million seconds,
which is over 11 days.

Suppose it takes that same processor 0.02 seconds to sort 100 items using MergeSort
(perhaps the MergeSort is slower for so few items). Then it will still take only 600
seconds to sort a million items using the MergeSort, i.e., 10 minutes. This is calculated
from 0.02 seconds = M * 100 * log2(100), where the multiplier M depends on the
processor. So the time for a million items is M * 1,000,000 * log2(1,000,000)
which is only 30,000 times as long as 0.02 seconds, to sort 10,000 times as many items.
Figure 13.8 shows comparative values for N being various powers of 10.

 Java Au Naturel by William C. Jones 13-23 13-23

N N * log2(N) N-squared
10 40 100
100 700 10,000
1,000 10,000 1 million
10,000 140,000 100 million
100,000 1.7 million 10,000 million
1 million 20 million 1 million million

 Figure 13.8 The relation of N to N*log2(N) and N-squared

Clearly the MergeSort executes faster than any elementary sort for very large amounts of
data. Does that mean it is more efficient? Efficiency is not just a matter of execution
time. Efficiency depends on three factors -- space, time, and programmer effort.
The MergeSort takes twice as much space (the itsSpare array) and a lot more
programmer effort to develop. So it is better to use an elementary sort unless the amount
of data is so large as to make the extra space and effort worth the savings in time.

Execution time for QuickSort

The QuickSort algorithm in the best case makes slightly fewer comparisons than the
MergeSort makes in the worst case, i.e., when the QuickSort's pivot turns out to be right
in the middle each time. Specifically, one execution of the QuickSort algorithm for N
values takes N-1 comparisons to get the pivot in the right spot, then it sorts N/2
values in one half and N - N/2 - 1 values in the other half (assuming a perfect
split).

Since the split operation of the QuickSort on average only moves about half of its values
around in the array, but the merge operation of the MergeSort moves all of the values
around in the arrays, the best-case performance of QuickSort is somewhat better than
the worst-case performance of MergeSort.

Statistical analysis has shown that the average-case performance of QuickSort is 1.386
times the best-case performance time (that number is twice the natural log of 2, in case
you are interested in where it came from). That is 38.6% slower than the best-case time,
so QuickSort has on average a slightly greater execution time than MergeSort. However,
the worst-case performance of QuickSort is big-oh of N2 and somewhat worse than
InsertionSort.

Fastest sorting algorithms

We next show that any sorting algorithm that uses no information about the values being
sorted except what the compareTo method supplies must make at least N*Log(N)-
1.5N comparisons to be sure of sorting N different values. Here we use Log to denote
logarithms base 2 without rounding up (e.g., Log(3) is about 1.58). Since we have
already shown that the MergeSort logic never requires more than N*log2(N)-N+1
comparisons, it follows that you can hardly do much better than the MergeSort.

To see why this assertion is true, consider that the N different values can be in any of
N! (N-factorial) different orderings. Each use of the compareTo method eliminates
from consideration at most half of the number of possible orderings. So there will always
be some cases where you have to make at least Log(N!) calls of compareTo before
you know which ordering you have.

Once we prove the general (Stirling) formula that N! > NN/21.5N, it will follow that

 Log(N!) > Log(NN/21.5N) = N*Log(N/21.5) = N*Log(N)-1.5N.

 Java Au Naturel by William C. Jones 13-24 13-24

This general formula is obviously true when N is 1 or 2 (since then the right side of the
formula is less than 1 but the left side is at least 1). Once you have verified the general
formula holds for some particular value of N, you can inductively verify it for N+1 as
follows: The left side of the general formula for N+1 obviously becomes N+1 times as
large as it was for N, but its right side becomes less than N+1 times as large (according
to the logic in the next paragraph), so the general formula still holds for N+1. The
Induction Principle tells us that the general formula will always be true.

How do we know that replacing N by N+1 in the expression NN/21.5N makes the
expression less than N+1 times as large? Because the denominator increases by about
2.82 (twice the square root of 2) and the numerator increases by about 2.72 times N+1.
Specifically, the NN numerator increases by two factors: ((N+1)/N)N and N+1. The
first factor is less than Math.E, since Math.E is defined to be the upper limit of all such
values. And Math.E is about 2.72, which is less than 2.82. Q.E.D.

Stability

The MergeSort has another advantage in that it is a stable sort. A sort is stable if two
values that are equal end up in the same relative position that they had in the unsorted
sequence. For example, if A.compareTo(B) is zero, and A was initially at index 22
and B was initially at index 37, then A should be at a lower index than B in the sorted
array. This is always true for the MergeSort and the InsertionSort, but it is not always
true for the QuickSort and the SelectionSort. So the QuickSort and SelectionSort
algorithms described in this chapter are not stable sorts. Of the three sorts described in
the next section, the ShellSort is not stable but the other two are.

An extended example

The next example illustrates how you can use the insertionSort method and others
presented in this chapter to sort an array of values using a criterion other than what the
compareTo method returns. Say you have a class of objects named Worker, and one
of the instance methods returns an int value, e.g., someWorker.getBirthYear() is
the year in which that Worker was born. You can then sort an array of Workers in order
of birth year, even if the Worker class does not implement the Comparable interface.

If you have a partially-filled array itsItem that contains itsSize Worker objects,
then the following statement would sort them in ascending order of birth year and also
obtain the number of comparisons of pairs of Workers that were made to get them sorted:

 int n = WorkerByBirth.numComps (itsItem, itsSize);

Listing 13.6 (see next page) defines a WorkerByBirth object to have one instance
variable, a Worker, and one instance method such that x.compareTo(y) < 0 tells
whether Worker x has a smaller birth year than Worker y has. This is in the upper
part of the listing. Note that you would only have to replace the one return statement in
the compareTo method to have a class that puts people in ascending order of the
number of children they have or puts houses in descending order of their selling price or
puts any kind of object in the order dictated by any int-valued instance method.

The numComps class method takes any partially-filled array of Workers and creates a
second array containing one WorkerByBirth object corresponding to each Worker object.
Then it calls the insertionSort method developed earlier in this chapter to sort these
Comparable objects in increasing order of birth year. Finally, it extracts the now-
reordered Worker objects back into the original array.

 Java Au Naturel by William C. Jones 13-25 13-25

Listing 13.7 Sorting a partially-filled array of Workers by birth year

class WorkerByBirth implements Comparable
{
 private static int theNumComps = 0;
 private Object itsWorker;

 public WorkerByBirth (Object given)
 { itsWorker = given;
 } //=======================

 public int compareTo (Object ob)
 { theNumComps++;
 return ((Worker) itsWorker).getBirthYear()
 - ((Worker) ob).getBirthYear();
 } //=======================

 public static int numComps (Object[] givenArray, int size)
 { Comparable[] tempArray = new Comparable [size];
 for (int k = 0; k < size; k++)
 tempArray[k] = new WorkerByBirth (given[k]);
 theNumComps = 0;
 CompOp.insertionSort (tempArray, size);
 for (int k = 0; k < size; k++)
 given[k] = tempArray[k].itsWorker;
 return theNumComps;
 } //=======================
}

Before calling the insertionSort method, numComps sets a class variable
theNumComps to zero. Each call of the compareTo method in the WorkerByBirth
class increments theNumComps. So the value of theNumComps returned is the
number of comparisons of two Workers made during execution of the insertionSort
method.

Note that you would only have to replace the name insertionSort by quickSort
to use the QuickSort algorithm for the sorting rather than the InsertionSort algorithm, and
similarly for other sorting algorithms. So you can use this coding to count the number of
comparisons made for any sorting algorithm with just one name-change.

Exercise 13.41 For the processor described in this section (where sorting 100 values
takes 0.01 second for InsertionSort and 0.02 seconds for MergeSort), how long would it
take to sort ten million values with each method?
Exercise 13.42 Give an example to show that the SelectionSort is not stable.
Exercise 13.43* Give an example to show that the QuickSort is not stable.
Exercise 13.44* Explain why the InsertionSort is stable.
Exercise 13.45* Explain why the MergeSort is stable.
Exercise 13.46* Revise Listing 13.7 so that it will sort an array of String values in
descending order of their second characters. Strings without a second character are
considered to come before Strings that have second characters.
Exercise 13.47* If compQS(N) is the minimum number of comparisons that the
QuickSort requires to sort N items, it is defined by the following recurrence equations:
compsQS(N)= (N-1) + compsQS(N/2) + compsQS(N-N/2-1) for N > 1; compsQS(1)=0.
Use this information to calculate compsQS(N) for 3, 7, 15, 31, and 63 (all are 2k-1).

 Java Au Naturel by William C. Jones 13-26 13-26

13.7 Additional Sorting Algorithms: Bucket, Radix, and Shell

There are many other sorting algorithms that computer scientists have invented over the
years. One frequently-used algorithm is the heap sort, which is discussed at length in
Chapter Eighteen. We briefly describe some other sorting algorithms in this section. You
need to review the definition of a queue in Section 7.11 first, or read the first section of
Chapter Fourteen, because this section uses queues to solve sorting problems.

The bucket sort

Sometimes you have a collection of objects that you want sorted based on age or the
number of children or some other non-negative integer attribute of the objects. For
generality, say that the objects have an instance method getIntValue() that returns
a non-negative int value. Then you could keep an array of queues indexed by this int
value. That is, itsItem[k] is a queue of all elements for which getIntValue()
returns k. Putting each element into the data structure is a big-oh of 1 operation using
the following statement:

 itsItem[element.getIntValue()].enqueue (element);

After you put all the elements in this data structure, remove them one at a time to get
them in order of priority. This is called a bucket sort, since each queue can be thought
of as a bucket containing data values. Its execution time is big-oh of N if the range of
values for getIntValue does not change as N changes and is not too large. This
sorting algorithm is a stable algorithm because we use queues rather than just any old
kind of bucket.

A specific application of this algorithm sorts a large number of data values, each of which
has an instance variable consisting of a 3-letter word formed with lowercase letters. If you
want the data values sorted in increasing order of these words, which might be stored in
an instance variable named itsWord, you could use the following getIntValue
method to obtain a number in the range from 0 up to 26*26*26 (i.e., 17,576):

 public int getIntValue()
 { return (itsWord.charAt (0) - 'a') * 26 * 26
 + (itsWord.charAt (1) - 'a') * 26
 + (itsWord.charAt (2) - 'a');
 }

The radix sort

If the range of values produced by getIntValue is too large (e.g., sorting by social
security number would need an array with a billion components), use a radix sort
instead:

1. Put each element into one of ten queues based on the last digit of getIntValue.
2. Combine the ten queues into one grand list, with the queue for digit '0' first, the queue

for digit '1' second, etc. The queue for digit '9' will be at the end.
3. Repeat steps 1 and 2 for the next-to-last digit, then the third-to-last digit, etc., working

right-to-left.

When this algorithm finishes, the elements will be sorted in order of getIntValue. To
see this, assume that we are using 9-digit numbers (as for social security numbers).
Because of the last pass through the data, all the elements that begin with '0' will be first
on the list, followed by those that begin with '1', followed by those that begin with '2', etc.
All the elements that begin with '0' were on the grand list at the end of the next-to-last
pass in order of their second digit. That order did not change during the last pass. So

 Java Au Naturel by William C. Jones 13-27 13-27

within the group of elements that begin with '0', all the ones whose second digit is '0'
come first, then come those whose second digit is '1', etc.

Total execution time is proportional to nine times the number of elements that you are
sorting, since you make a total of nine passes through the data (one per digit). This
assumes that combining the ten queues into one queue is a big-oh of 1 operation, which
it is if you use NodeQueues with the append method described in Chapter Fourteen.
This radix sort is a stable sorting method.

Back in the 1960's, there was a massive and expensive machine that sorted punch cards
according to this radix sort algorithm. Say the social security number was stored in
columns 40 through 48 of punch cards. The operator would stack the cards in an input
hopper and push the button to indicate column 48. The machine would read column 48
of each punch card and drop the card into one of ten stacks depending on the digit in that
column. The operator would collect the ten stacks, carefully putting stack '0' on top and
stack '9' on the bottom. Then the operator would put the combined stacks in the input
hopper and push the button to indicate column 47, etc.

An in-place merge sort

The big problem with the merge sort is that it requires a second array for temporary
storage. The obvious way to avoid using a second array is as follows, assuming we are
sorting the values in the index range start to end inclusive:

1. Divide the range in half by computing mid = (start + end) / 2;
2. Sort item[start]...item[mid] in place.
2. Sort item[mid+1]...item[end] in place.
3. Combine the two halves by inserting item[mid+1] where it goes in the first half,
then inserting item[mid+2] where it goes in the first half, then item[mid+3], etc.

The problem with this algorithm is that the merging part generally has to shift
approximately N/2 values back down the array to make room for each new value inserted
(N denotes the total number of items to sort). Since these large movements of data also
take place when sorting the two halves, the overall execution time is generally longer
than for the insertion sort. So this obvious algorithm is a bust.

However, if you only had to shift a very few data items for each insertion, this would
actually work pretty fast. So let us divide the values to be sorted with items indexed 0, 2,
4, 6, 8, etc. in one half, and items indexed 1, 3, 5, 7, etc. in the other half. Sort the first
half (the even-indexed) and sort the second half (the odd-indexed) separately. Then
merge the two by doing an insertion sort on the whole. Since almost all of the data
values should be very close to where they should be, we typically only move each data
value 1 or 2 or 3 positions in this final sorting pass. So it takes time proportional to N.
Since we make Log2(N) passes through the data, this algorithm seems likely to take not
much more than N*Log2(N) execution time. But maybe more -- it depends.

Listing 13.8 (see next page) shows how this algorithm can be implemented non-
recursively. Say we have 6,000 items to sort. We first calculate jump as 4096, the
largest power of two that is less than the given size. Then sortGroups (item,
size, 4096) compares each item with the one 4096 below it, swapping them if
needed to get them in increasing order.

On the next call of sortGroups, jump is 2048, so the values at indexes 0, 2048,
4096, and 6144 are put in order using an insertion sort logic. Since the values at indexes
0 and 4096 are already in order, and so are the values at indexes 2048 and 6144, this
will take less time than it otherwise would. Similarly, the values at indexes 1, 2049, 4097,
and 6145 are put in order using an insertion sort logic, etc.

 Java Au Naturel by William C. Jones 13-28 13-28

Listing 13.8 An in-place merge sort algorithm for a partially-filled array

 /** Precondition: size <= item.length; item[0]...item[size-1]
 * are non-null values all Comparable to each other.
 * Postcondition: The array contains the values it initially
 * had but with item[0]...item[size-1] in ascending order. */

 public static void mergeSortBy2s (Comparable[] item, int size)
 { int jump = 1;
 while (jump * 2 < size)
 jump *= 2;
 for (; jump >= 1; jump /= 2)
 sortGroups (item, size, jump);
 } //=======================

 private static void sortGroups(Comparable[] item, int size,
 int jump)
 { for (int k = jump; k < size; k++)
 insertInOrder (item, k, jump); // left as an exercise
 } //=======================

This process continues until on the last pass jump is 1, which does in effect an ordinary
insertion sort. However, since the odd-indexed data values will already be in order, and
so will the even-indexed data values, this last pass should take very little time. The
coding for the required insertInOrder method is left as an exercise.

The shell sort

For the sorting method in Listing 13.8, it can sometimes happen that most of the odd-
numbered values are rather small and most of the even-numbered values are rather
large. So the last pass will still do a great deal of moving of data. This problem can be
almost entirely eliminated if we sort of "mix up" the subsequences that we are sorting.

This can be done by using a jump value of one less than a power of 2 (4095 in the
example) on the first pass. Then the next pass will divide it by 2, which gives a jump
value of 2047. The next time it will be 1023, then 511, then 255, etc.

This sorting algorithm is called the shell sort (named after the person who invented it,
Donald Shell). Any sequence of jump values can be used, as long as each is at least
twice as small as the one before. The normal sequence of jump values used is 1, 4, 13,
40, 121, etc., i.e., the sum of the first few powers of 3 (121 is 1 + 3 + 9 + 27 + 81). Note
that the jump values described in for the in-place merge sort are sums of the first few
powers of 2 (1 + 2 + 4 + 8 + 16 + 32 + 64 + 128...). Note also that neither the shell sort
nor the in-place merge sort is a stable sorting algorithm.

Exercise 13.48 Revise Listing 13.8 to do a shell sort with jumps of 1, 4, 13, 40, 121, etc.
Exercise 13.49* Write the insertInOrder method required for Listing 13.8.
Exercise 13.50* Essay: Explain clearly and in detail why the bucket sort and radix sort
are both stable sorts.
Exercise 13.51** Write public static void bucketSort (Coded[] item,
int size) to sort the size elements of the item array using the bucket sort logic.
All values are elements of a class named Coded that defines getIntValue() and
also defines public final int MAX_VALUE giving the largest value of
getIntValue().

 Java Au Naturel by William C. Jones 13-29 13-29

13.8 About The Arrays Utilities Class (*Sun Library)

The Arrays class in the java.util package has 55 methods that can be useful at
times. They are named equals, sort, fill, binarySearch, and asList.

• Arrays.equals(someArray, anotherArray) returns a boolean that tells

whether the two arrays have the same values in the same order. There is one such
method for each of the 8 primitive types (e.g., two arrays of ints) and one for two
arrays of Objects (using that kind of Object's equals method).

• Arrays.sort(someArray) sorts in ascending numeric order an array of byte,
char, double, float, int, short, or long values (thus 7 such methods). It uses a
modification of the QuickSort algorithm that maintains N*log(N) performance on many
sequences of data that would cause the simple QuickSort to degenerate into N2
performance.

• Arrays.sort(someArray, startInt, toInt): the same as the above except
it only sorts the values at the indexes from startInt up to but not including toInt.
As usual, it requires 0 <= startInt <= toInt <= someArray.length.

• Arrays.sort(someArray) sorts in ascending order an array of Comparable
objects with compareTo. It uses the MergeSort algorithm, thus it is a stable sort.

• Arrays.sort(someArray, startInt, toInt): the same as the above for an
array of Comparable objects except it only sorts the values at the indexes from
startInt up to but not including toInt.

• Arrays.fill(someArray, someValue) assigns someValue to each
component of the array. There is one such method for each of the 8 primitive types
(e.g., an array of longs with a long someValue) and one for Objects.

• Arrays.fill(someArray, startInt, toInt, someValue): the same as
the above except it only assigns components from startInt up to but not including
toInt.

• Arrays.binarySearch(someArray, someValue) returns the int index of
someValue in the array using binary search. The array should be in ascending
order. There is one such method for each of the 7 numeric types (e.g., an array of
doubles with a double someValue) and one for Objects (using compareTo). If
someValue is not found, then the value returned is negative: -(n+1) where n is the
index where you would insert someValue to keep all the values in order.

• Arrays.asList(someArrayOfObjects) returns a List object "backed by" the
array. This List cannot be modified in size, and each change to the List is reflected
immediately in the array itself (set is supported but add and remove are not).
The List interface is described in Section 15.10.

• Three additional Arrays methods are analogous to the three Object methods above
that use compareTo, but they have an additional Comparator parameter.

The Comparator interface in the java.util package specifies two methods that can be
used for Objects instead of the "natural" compareTo and equals methods:

• someComparator.compare(someObject, anotherObject) returns an int

value with the same meaning as compareTo, but the comparison is usually based
on some other criterion than what compareTo uses.

• someComparator.equals(someObject, anotherObject) returns a boolean
telling whether the Comparator's compare method returns zero, or both objects are
null.

 Java Au Naturel by William C. Jones 13-30 13-30

13.9 Review Of Chapter Thirteen

In general:

Ø For any int variable k, if you use the expression k++ or k-- in a statement, it has the

value that k had before it was incremented or decremented. When the variable is
after the ++ or -- operator, it has the final value after incrementing or decrementing.
For instance, if k is 4, then item[k++]=2 assigns 2 to item[4] and changes k to
5, but item[++k]=2 assigns 2 to item[5] and changes k to 5. If a variable
appears twice in the same statement, and one appearance has the ++ or -- operator
on it, the effect is too hard to keep straight, so do not do that.

Ø The source code for a method X can contain a call of X or a call of a method that
(eventually) calls X. This is recursion. At run time, each execution of a method call
generates an activation of that method. During execution of that activation,
additional method calls generate complete different activations. Recursion means
that two different activations can be executing the same logic sequence.

Ø A recursive method cannot loop forever if it has a recursion-control variable, either
explicitly declared or implicit in the logic. A recursion-control variable for method X is
a variable with a cutoff amount which satisfies (a) each call of X from within X
requires that the recursion-control variable for the current activation is greater than
the cutoff, (b) each call of X from within X passes a value of the recursion-control
variable to the new activation that is at least 1 smaller than the existing activation
has.

Ø We say that a function T(N) is big-oh of another function f(N) when you can find
positive constants C and K such that T(N) <= C * f(N) whenever N >= K. The most
functions that occur for f(N) are log(N), N, N*log(N), and N2.

About some classic algorithms:

Ø The SelectionSort puts a list of two or more values in order by selecting the

smallest, putting it first, then applying the SelectionSort process to the rest of the list.
Ø The InsertionSort puts a list of two or more values in order by applying the

InsertionSort process to the sublist consisting of all but the last value, then inserting
that last value in order.

Ø The BinarySearch algorithm finds a target value in an ordered list of two or more
values by comparing the target value with the middle value of the list to decide which
half could contain the target value, then applying the BinarySearch process to find
the target value in that half of the list.

Ø The QuickSort puts a list of two or more two or more values in order by choosing
one element, dividing the list in the two sublists of those larger and those smaller
than the chosen element, then applying the QuickSort process to each of the two
sublists.

Ø The MergeSort puts a list of two or more values in order by dividing it in half,
applying the MergeSort process to each half, and then merging the two sorted halves
together in order.

Ø Average execution time for the InsertionSort and SelectionSort is roughly proportional
to N2 where N is the number of values to sort. Sorting algorithms with this property
are called elementary sorts.

Ø Average execution time for the BinarySearch algorithm is roughly proportional to
log2(N). In this context, log2(N) is the lowest power you put on 2 to get a
number not smaller than N. In particular, log2(N) is 6 for any number in the
range from 33 to 64.

Ø Average execution time for the MergeSort and QuickSort is roughly proportional to
N*log2(N). This describes the big-oh behavior of these algorithms. Figure 13.16
compares the sorting algorithms for efficiency. Efficiency depends on three factors:
space, time, and programmer effort.

 Java Au Naturel by William C. Jones 13-31 13-31

Ø A sort is stable if, of two values that are equal, the one that came earlier in the
unsorted list ends up earlier in the sorted list. For the main algorithms described in
this chapter, the InsertionSort and MergeSort are stable sorts; the SelectionSort and
QuickSort are not.

 worst-case time average-case time extra space programmer effort
SelectionSort N-squared N-squared 1 low
InsertionSort N-squared N-squared fast 1 low
QuickSort N-squared N * log(N) fast 1 medium
MergeSort N * log(N) N * log(N) fast N medium
HeapSort N * log(N) N * log(N) 1 high

Figure 13.16 Efficiency of five sorting algorithms (HeapSort is in Chapter 18)

Answers to Selected Exercises

13.1 Replace the loop condition k < size - 1 by item[k + 1] != null and replace the loop condition
 k <= end by item[k] != null.
13.2 Replace the phrase "< 0" by the phrase "> 0", the word "Min" by the word "Max", and
 the word "Smallest" by the word "Largest".
13.5 private static void insertInOrder (Comparable[] item, int m)
 { if (item[m].compareTo (item[m - 1]) < 0)
 { Comparable save = item[m];
 item[m] = item[m - 1];
 for (m--; ... // all the rest as shown in Listing 13.2 after the for's first semicolon
 }
 }
 This executes faster only because item[m - 1] is moved up before the loop begins,
 so that the loop has one less iteration than in the original logic. Otherwise, if you
 made the comparison of item[m] with item[m - 1] twice, it would usually execute more
 slowly (the probability is quite low that item[m] is larger than the one before, once
 m becomes fairly large).
13.6 Replace the loop condition k < size by item[k] != null.
13.7 Replace "Comparable" by "double" in three places. Replace the second for-loop condition by:
 m > 0 && item[m - 1] > save
13.8 Insert the following phrase before the call of insertInOrder: if (item[k] != null)
 Change the condition in the for-loop to be the following:
 m > 0 && (item[m - 1] == null || item[m - 1].compareTo (save) > 0)
13.11 If the range lowerBound...upperBound has an odd number of values, say 13, then upperBound is
 lowerBound+12, so midPoint is lowerBound + 6, which divides the range into the 6 values above
 midPoint and the 7 values up through midPoint. In general, the front half is 1 larger when there
 are an odd number of values to search (upperBound - lowerBound is an even number).
13.12 If size is 0, then the body of the loop will not execute, and item[lowerBound] will be item[0]. Then
 the return statement might throw a NullPointerException or an ArrayIndexOutOfBoundsException.
13.13 The method is big-oh of N, where N is the number of values in the array.
13.14 If there are an even number of values to search, at least 4, then rounding the other way would
 make the lower part 2 larger than the upper part; the imbalance would slow the convergence
 somewhat. If however upperBound is lowerBound + 1, thus 2 values to search, then rounding up
 would make midPoint equal to upperBound. If target is larger than all values in the array,
 item[midPoint] is then smaller than target, so lowerBound becomes size, which might
 throw a NullPointerException or an ArrayIndexOutOfBoundsException. If upperBound is
 lowerBound+1 and item[upperBound] is not smaller than target, you would have an infinite loop.
13.19 pivot is 7, leaving X, 2, 9, 1, 5, 8, 4. 4<7 moves the 4 to the X, leaving 4, 2, 9, 1, 5, 8, X.
 2<7 stays where it is. 9>7 moves the 9 to the X, leaving 4, 2, X, 1, 5, 8, 9. 8>7 stays where it is.
 5<7 moves the 5 to the X, leaving 4, 2, 5, 1, X, 8, 9. 1<7 stays where it is. 7 replaces the X.
13.20 Replace >= by <= and <= by >= in the two if-conditions that mention compareTo.
13.21 The first pivot is 4, and the sort leaves {2, 1, 3, 4, 9, 5, 6, 8, 7}. The next pivot is 2, which leaves
 {1, 2, 3, 4, 9, 5, 6, 8, 7}. The next pivot is 9, which leaves {1, 2, 3, 4, 7, 5, 6, 8, 9}. That just leaves
 {7, 5, 6, 8} to sort. The next pivot is 7, which leaves {1, 2, 3, 4, 6, 5, 7, 8, 9}. The final pivot is 6.
13.22 Any value equal to the pivot would be moved from one side to the other of where the pivot goes.
 This would slow down the execution (due to the extra moves) but not change the outcome except
 that two objects x, y for which x.compareTo(y)==0 might be in a different order in the outcome.
13.23 (a) Replace the first two statements by Comparable pivot = itsItem[hi]; boolean lookHigh = false;
 (b) Replace the first statement by int spot = lo + int (Math.random() * (hi + 1 - lo));
 Comparable pivot = itsItem[spot]; itsItem[spot] = itsItem[lo];

 Java Au Naturel by William C. Jones 13-32 13-32

13.24 At the first evaluation of the while-condition lo < hi, lo equals start (since start was passed in as
 the initial value of the parameter lo), so there are NO values from start through lo-1, so all of them
 are (vacuously) less than the pivot. Similarly, hi equals end, so there are no values from hi+1
 through end, so all of those values are (vacuously) greater than the pivot. Finally, lookHigh is
 true and itsItem[lo] is where the pivot came from, so itsItem[lo] is "empty".
13.31 Initially we have (lo)4, 7, 12, 17, (hi)3, 6, 9, 14. Since 4 is larger than 3, move 3 to spare, so
 we now have (lo)4, 7, 12, 17, X, (hi)6, 9, 14. Since 4 is smaller than 6, move 4 to spare, so
 we now have X, (lo)7, 12, 17, X, (hi)6, 9, 14. Since 7 is larger than 6, move 6 to spare, so
 we now have X, (lo)7, 12, 17, X, X, (hi)9, 14. Since 7 is smaller than 9, move 7 to spare, so
 we now have X, X, (lo)12, 17, X, X, (hi)9, 14. Since 12 is larger than 9, move 9 to spare, so
 we now have X, X, (lo)12, 17, X, X, X, (hi)14. Since 12 is smaller than 14, move 12 to spare, so
 we now have X, X, X, (lo)17, X, X, X, (hi)14. Since 17 is larger than 14, move 14 to spare, then 17.
13.32 The sort method is revised as follows, to allow us to discard the sortToSpare method:
 public void sort (int start, int end, boolean toSpare)
 { if (start >= end)
 { if (toSpare)
 itsSpare[start] = itsItem[start];
 }
 else
 { int mid = (start + end) / 2;
 sort (start, mid, ! toSpare);
 sort (mid + 1, end, ! toSpare);
 if (toSpare)
 merge (itsItem, itsSpare, start, mid, mid + 1, end);
 else
 merge (itsSpare, itsItem, start, mid, mid + 1, end);
 }
 }
 This is worse. The extra tests make this execute slower, and it seems harder to understand.
13.33 Replace if(start < end) in the body of the sort method by the following:
 if (start + 1 >= end)
 { if (start < end && itsItem[start].compareTo (itsItem[end]) > 0)
 { Comparable save = itsItem[start];
 itsItem[start] = itsItem[end];
 itsItem[end] = save;
 }
 }else
 Replace the first two lines at the beginning of the sortToSpare method by the following:
 if (start + 1 >= end)
 { if (start >= end)
 itsSpare[start] = itsItem[start];
 else if (itsItem[start].compareTo (itsItem[end]) > 0)
 { itsSpare[end] = itsItem[start];
 itsSpare[start] = itsItem[end];
 }
 else
 { itsSpare[start] = itsItem[start];
 itsSpare[end] = itsItem[end];
 }
 }else
13.34 The calls are (a) sort(0,7), which calls (b) sortToSpare(0,3), which calls sort(0,1), which calls
 sortToSpare(0,0) and sortToSpare(1,1). Backing up, (b) calls sort(2,3) which calls sortToSpare(2,2)
 and sortToSpare(3,3). Backing up even more, (a) calls (c) sortToSpare(4,7), which calls sort(4,5),
 which calls sortToSpare(4,4) and sortToSpare(5,5). Backing up, (c) calls sort(6,7), which calls
 sortToSpare(6,6) and sortToSpare(7,7). Those are all of the 15 calls.
 calls sort(2,2) and sort(3,3). Then (b) calls (d) sort(4,7), which similarly gives
13.41 For the InsertionSort, multiply the 11 days by the square of 10, thus 1100 days (about 3 years).
 For the MergeSort, the time is M * 10million * log2(10million). The second factor is
 10 times what it was for a million items, and the third factor is 24/20 times what it
 was for a million items, so it takes 10*1.2 = 12 times 10 minutes, thus 2 hours.
13.42 For the sequence 5, 5, 3, 8, the first pass swaps the 3 with the first 5, so those two 5's
 are not in their original relative position. Other passes do not change anything.
13.48 Replace the middle 3 lines of the mergeSortBy2s method by the following lines:
 while (jump * 3 + 1 < size)
 jump = jump * 3 + 1;
 for (; jump >= 1; jump /= 3)

