
High-Level Programming

Languages

Spring 2007

CSC 120.02: Introduction to Computer Science

Lecture 11, March 6, 2007

Instructor: Dmitri A. Gusev

Translating Programs

Assemblers translate the assembly-language instructions into

machine code, or machine language. The assemblers are

translating programs for low-level programming languages.

Programs that translate high-level language programs into

machine code are called compilers. For a high-level

programming language to be used on multiple types of

machines, many compilers for that language are needed.

A program that translates from a low level language to a higher

level one is a decompiler.

An interpreter is a translating program that inputs a program in a

high-level language and directs the computer to immediately

perform the actions specified in each statement. Interpreters can

be viewed as simulators for the language in which a program is

written.

Translation of Java Programs
A Java program is first

compiled into a standard

machine language called

Bytecode. A software

interpreter called the Java

Virtual Machine (JVM) then

takes the Bytecode

program and executes it.

Any machine that has a

JVM can run the compiled

Java program.

Java program

Java compiler

Bytecode

program

Windows PC

running JVM

UNIX

workstation

running JVM

Program output Program output

Macintosh

running JVM

Program output

Classification of High-Level

Programming Languages

High-Level

Programming

Languages

Imperative or

Procedural

Languages

(FORTRAN,

C, Pascal, Ada, etc.)

Functional

Programming

Languages

(LISP, Scheme, ML)

Logic Programming

Languages

(PROLOG)

Object-Oriented

Programming (OOP)

Languages

(SIMULA, Smalltalk,

C++, Java)

Java is an object-oriented language with some imperative features. Let’s discuss

these features in more detail…

Boolean Expressions

A Boolean expression is a sequence of identifiers,

separated by compatible operators, that

evaluates to true or false. A Boolean

expression can be

1) a Boolean variable (its name):

boolean headlightsOn; // headlightsOn is declared here.

/* headlightsOn is a Boolean variable…

This was a multi-line comment. */

if (headlightsOn) // headlightsOn is a Boolean expression HERE!

System.out.println(“Please turn off the lights! Your battery.”);

Boolean Expressions (cont’d)

A Boolean expression can also be

2) an arithmetic expression followed by a relational

operator followed by an arithmetic expression.

Relational operators, a.k.a. conditional operators, are:

Operator Name

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

Boolean Expressions (cont’d)

A Boolean expression can also be

3) A Boolean expression followed by a Boolean

operator followed by a Boolean expression.

The Boolean operators are:

Operator Name

! NOT

&& Conditional-AND

|| Conditional-OR

Data Types
In Java, there are 8 primitive data types:

1) byte — 8-bit signed two's complement integer

2) short —16-bit signed two's complement integer

3) int — 32-bit signed two's complement integer

4) long — 64-bit signed two's complement integer

5) float — 32-bit floating point

6) double — 64-bit floating point

7) boolean — only two possible values: true and false

8) char — a single 16-bit Unicode character

In addition to that, special support for character strings is provided:

String s = “this is the true name of Thoth”;

// Once created, the values of String objects cannot be changed!

Strong typing means that each variable is assigned a type, and only
values of that type can be stored in the variable.

A data type is a description of the set of values and the basic set of
operations that can be applied to values of the type.

Declarations

A declaration is a statement that associates an
identifier with a variable, an action, or some other
entity within the language.

// field declaration in Java

private int numberOfSecretChambers; // A field declaration with a MODIFIER!

In Java, the following kinds of variables are defined:

1) Instance variables (non-static fields)

2) Class variables (static fields): They are declared
with the static modifier

3) Local variables: They are only visible to the
methods in which they are declared

4) Parameters

Access Levels in Java

The following table shows the access to fields and

methods permitted by each modifier.

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

Assignment Statement
An assignment statement is a statement that stores the

value of an expression in a variable.

public class Circle

{

private double radius;

public Circle() // Default constructor

{

radius = 1.0; // This is an assignment statement

}

public Circle(double r) // Construct a circle with a specified radius

{

radius = r; // This is yet another assignment statement

}

public double findArea()

{

return radius*radius*3. 14159265358979;

}

}

The if Statement

if (height<0.0)

System.out.println(“This is an inverted pyramid, Dan!”);

else if (height>0.0) // a “nested” if statement

{ // begin block

System.out.println(“This is a normal pyramid.”);

System.out.println(“Yup. A regular one.”)

} // end block

else

System.out.println(“No pyramid found.”);

The switch Statement

class SwitchDemo

{

public static void main(String[] args)

{

int pyramidID = 3;

switch (pyramidID)

{

case 1: System.out.println("Pi-ramid"); break;

case 2: System.out.println("Py-thagorean triangle"); break;

case 3: System.out.println("Golden ratio"); break;

case 4: System.out.println("Lady with a False Beard"); break;
default: System.out.println("No such pyramid in Giza"); break;

}

}

}

Looping Statements

/*--- 1 ---*/

while (expression) // The while loop begins here

{

statement(s)

} // end of the while loop

/*--- 2 ---*/

do // The do-while loop begins here

{

statement(s)

}

while (expression); // end of the do-while loop

Looping Statements (cont’d)

class ForDemo

{

public static void main(String[] args)

{ /*--- 3 ---*/

for(int i=1; i<5; i++) // i is a local variable! The for loop begins here

{

System.out.println("Count is: " + i);

} // end of the for loop

}

}

The initialization expression initializes the loop; it's executed once, as
the loop begins.

When the termination expression evaluates to false, the loop
terminates.

The increment expression is invoked after each iteration through the
loop; it is perfectly acceptable for this expression to increment or
decrement a value.

Arrays

int[] anArray; // declares an array of integers

anArray = new int[10]; // allocates memory for 10 integers

anArray[0] = 100; // initialize first element

anArray[1] = 200; // initialize second element

anArray[2] = 300; // etc.

Recursion

// Recursive method for computing factorial of n

static long factorial(int n)

{

if (n == 0) // Stopping condition

return 1;

else

return n*factorial(n-1); // Call factorial recursively

}

