Pipelining I

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 9, October 3, 2007

Dependencies

Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards

Time (in clock cycles)
Value of CC1 CC2 CC3 Cc4 CC5 CC6 CC7 CcCcs8 CC9

register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

\

Software Solution

« Have compiler guarantee no hazards
 Where do we insert the "nops” ?

sub $2, $1, $3

and $12, $2, S$5
or $13, $6, $2
add $14, $2, $2
sw $15, 100(S2)

* Problem: this really slows us down!

Forwarding

Use temporary results, don’t wait for them to be written
— regqister file forwarding to handle read/write to same register

— ALU forwarding

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CC6 cc7

Value of register $2: 10 10 10 10 10/-20 -20 -20
Value of EX/MEM: X X X -20 X X X
Value of MEM/WB: X X X X -20 X X
Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2
add $14,%2, $2
sw $15, 100($2)

-/

what if this $2 was $13?

ccs cco

-20 -20
X X
X X

Forwarding

The main idea (some detalls not shown)

ID/EX EX/MEM MEM/WB
— M
u —----—>
—|
Registers 4 FoverdA
ALU —
—! —] >
M Daia : :
= u > memory M
X u
>
ﬂ :
—|

~(Fowarding |<— | MEVWVBRegseRd

>\ unit |-

|a|:a|::|w
=5

Can't always forward

Load word can still cause a hazard:
— an instruction tries to read a register following a load instruction
that writes to the same register.

Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

Program
execution
order

(in instructions)

Iw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7
Y

Thus, we need a hazard detection unit to “stall” the load instruction

Stalling

« We can stall the pipeline by keeping an instruction in the same stage

>

Time (in clock cycles)
CcCc1l CCc2 CC3 CCc4 CC5 CC6 Ccc7 ccs CC9 CC 10

Program
execution
order

(in instructions)

lw $2, 20($1)

and becomes nop

add $4, $2, $5

or $8, $2, $6

add $9, $4, $2

Hazard Detection Unit

« Stall by letting an instruction that won’t write anything go forward

CW
IF/DW
‘%]
D)
S I
o
J
=
Y
|
=] 5]
I3
< |§
| @

e EX/IMEM
M —
I_ M

X
egisters
ALU

M Data

u memory

X

Y

IF/ID.RegisterRs

|IF/ID.RegisterRt
IF/ID.RegisterRt R, [M
u

IF/ID.RegisterRd Rd
> > X

/EX.RegisterRt

Branch Hazards

When we decide to branch, other instructions are in the pipeline!

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CcCs8 CC9

Program
execution
order

(in instructions)
40 beq $1, $3, 28 EI+ h
44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)
\/

We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong

Flushing Instructions

IIIII

&2
[eT=T%]
EREaF

—
1N T\
Instruction t -
u PCl—> = 1t nr Y 0 Yo /71 ! Tl memory
memor
x Y $ M)
M
> u
P X
/
Sign
@
(]
u
[[JL, |
(Fowardmg\ <
| unit

Note: we’ve also moved branch decision to ID stage

Branches

If the branch is taken, we have a penalty of one cycle
For our simple design, this is reasonable

With deeper pipelines, penalty increases and static branch prediction
drastically hurts performance

Solution: dynamic branch prediction

Not taken
Taken

Not taken

w

A 2-bit prediction scheme

Not taken

Taken

Branch Prediction

Sophisticated Techniques:
— A “branch target buffer” to help us look up the destination

— Correlating predictors that base prediction on global behavior
and recently executed branches (e.g., prediction for a specific
branch instruction based on what happened in previous branches)

— Tournament predictors that use different types of prediction
strategies and keep track of which one is performing best.

— A “branch delay slot” which the compiler tries to fill with a useful
instruction (make the one cycle delay part of the ISA)

Branch prediction is especially important because it enables other
more advanced pipelining techniques to be effective!

Modern processors predict correctly 95% of the time!

Improving Performance

 Try and avoid stalls! E.g., reorder these instructions:

1w $t0, 0(s$tl)
1w $St2, 4(s$tl)
sw St2, 0(s$tl)
sw $t0, 4(stl)

« Dynamic Pipeline Scheduling
— Hardware chooses which instructions to execute next

— Will execute instructions out of order (e.g., doesn’t wait for a
dependency to be resolved, but rather keeps going!)

— Speculates on branches and keeps the pipeline full
(may need to rollback if prediction incorrect)

* Trying to exploit instruction-level parallelism

Advanced Pipelining

Increase the depth of the pipeline

Start more than one instruction each cycle (multiple issue)
Loop unrolling to expose more ILP (better scheduling)
“Superscalar’ processors

— DEC Alpha 21264: 9 stage pipeline, 6 instruction issue

All modern processors are superscalar and issue multiple
Instructions usually with some limitations (e.g., different

“pipeS”)
VLIW: very long instruction word, static multiple issue
(relies more on compiler technology)

Clock rate

Faster

Slower

Chapter 6 Summary

Pipelining does not improve latency, but does improve throughput

Deeply Multiple issue
pipelined with deep pipeline
(Section 6.10)

Multiple-issue

Multicycle inali ipeli
: Pipelined pipelined
(Section 5.5) (Section 6.9)
9
®©
=
°
©
T
Single-cycle
(Section 5.4)
Slower Faster

Instructions per clock (IPC = 1/CPI)

Specialized

Shared

Multiple issue
with deep pipeline
(Section 6.10)

Multiple-issue
pipelined
(Section 6.9)

Single-cycle - Deeply
(Section 5.4) Pipelined pipelined
Multicycle
(Section 5.5)
1 Several

Use latency in instructions

