
Pipelining II

Fall 2007

CS 502: Computers and Communications Technology

Lecture 9, October 3, 2007

Instructor: Dmitri A. Gusev

• Problem with starting next instruction before first is finished

– dependencies that “go backward in time” are data hazards

Dependencies

Program

execution

order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

10 10 10 10 10/–20 –20 –20 –20 –20

Value of

register $2:

• Have compiler guarantee no hazards

• Where do we insert the “nops” ?

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

• Problem: this really slows us down!

Software Solution

• Use temporary results, don’t wait for them to be written

– register file forwarding to handle read/write to same register

– ALU forwarding

Forwarding

what if this $2 was $13?

Program

execution

order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14,$2 , $2

sw $15, 100($2)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

10 10 10 10 10/–20 –20 –20 –20 –20Value of register $2:

Value of EX/MEM: X X X –20 X X X X X

Value of MEM/WB: X X X X –20 X X X X

Forwarding

• The main idea (some details not shown)

ALU

Data
memory

Registers

M
u
x

M
u
x

M
u
x

M
u
x

ID/EX EX/MEM MEM/WB

Forwarding
unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rs
Rt
Rt
Rd

ForwardB

ForwardA

• Load word can still cause a hazard:

– an instruction tries to read a register following a load instruction

that writes to the same register.

• Thus, we need a hazard detection unit to “stall” the load instruction

Can't always forward

Program

execution

order

(in instructions)

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

Stalling

• We can stall the pipeline by keeping an instruction in the same stage

bubble

Program

execution

order

(in instructions)

lw $2, 20($1)

and becomes nop

add $4, $2, $5

or $8, $2, $6

add $9, $4, $2

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

Hazard Detection Unit
• Stall by letting an instruction that won’t write anything go forward

0 M

WB

WB

Data
memory

Instruction
memory

M

u

x

M

u

x

M

u

x

M

u

x

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding

unit

PC

Control

EX

M

WB

IF/ID

M

u

x

Hazard
detection

unit

ID/EX.MemRead

IF/ID.RegisterRs

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRd

ID/EX.RegisterRt

Registers

Rt

Rd

Rs

Rt

• When we decide to branch, other instructions are in the pipeline!

We are predicting “branch not taken”

– need to add hardware for flushing instructions if we are wrong

Branch Hazards

Reg

Program

execution

order

(in instructions)

40 beq $1, $3, 28

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DM Reg

IM DMReg Reg

IM DMReg Reg

Flushing Instructions

Control

Hazard
detection

unit

+

4

PC
Instruction
memory

Sign
extend

Registers
=

+

Fowarding
unit

ALU

ID/EX

EX/MEM

EX/MEM

WB

M

EX

Shift
left 2

IF.Flush

IF/ID

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

Data
memory

WB

WBM

0

Note: we’ve also moved branch decision to ID stage

Branches
• If the branch is taken, we have a penalty of one cycle

• For our simple design, this is reasonable

• With deeper pipelines, penalty increases and static branch prediction
drastically hurts performance

• Solution: dynamic branch prediction

Predict taken Predict taken

Predict not taken Predict not taken

Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Taken

A 2-bit prediction scheme

Branch Prediction

• Sophisticated Techniques:

– A “branch target buffer” to help us look up the destination

– Correlating predictors that base prediction on global behavior

and recently executed branches (e.g., prediction for a specific

branch instruction based on what happened in previous branches)

– Tournament predictors that use different types of prediction

strategies and keep track of which one is performing best.

– A “branch delay slot” which the compiler tries to fill with a useful

instruction (make the one cycle delay part of the ISA)

• Branch prediction is especially important because it enables other

more advanced pipelining techniques to be effective!

• Modern processors predict correctly 95% of the time!

Improving Performance
• Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

• Dynamic Pipeline Scheduling

– Hardware chooses which instructions to execute next

– Will execute instructions out of order (e.g., doesn’t wait for a

dependency to be resolved, but rather keeps going!)

– Speculates on branches and keeps the pipeline full

(may need to rollback if prediction incorrect)

• Trying to exploit instruction-level parallelism

Advanced Pipelining

• Increase the depth of the pipeline

• Start more than one instruction each cycle (multiple issue)

• Loop unrolling to expose more ILP (better scheduling)

• “Superscalar” processors

– DEC Alpha 21264: 9 stage pipeline, 6 instruction issue

• All modern processors are superscalar and issue multiple

instructions usually with some limitations (e.g., different

“pipes”)

• VLIW: very long instruction word, static multiple issue

(relies more on compiler technology)

Chapter 6 Summary

• Pipelining does not improve latency, but does improve throughput

Slower Faster

Instructions per clock (IPC = 1/CPI)

Multicycle

(Section 5.5)

Single-cycle

(Section 5.4)

Deeply

pipelined

Pipelined

Multiple issue

with deep pipeline

(Section 6.10)

Multiple-issue

pipelined

(Section 6.9)

1 Several

Use latency in instructions

Multicycle

(Section 5.5)

Single-cycle

(Section 5.4)

Deeply

pipelined
Pipelined

Multiple issue

with deep pipeline

(Section 6.10)

Multiple-issue

pipelined

(Section 6.9)

