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Pipelining

• Improve performance by increasing instruction throughput

Ideal speedup is number of stages in the pipeline.  Do we achieve this?
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Pipelining

• What makes it easy

– all instructions are the same length

– just a few instruction formats

– memory operands appear only in loads and stores

• What makes it hard?

– structural hazards:   suppose we had only one memory

– control hazards:  need to worry about branch instructions

– data hazards:  an instruction depends on a previous instruction

• We’ll build a simple pipeline and look at these issues

• We’ll talk about modern processors and what really makes it hard:

– exception handling

– trying to improve performance with out-of-order execution, etc.



Basic Idea

What do we need to add to actually split the datapath into stages?

WB: Write backMEM: Memory accessIF: Instruction fetch ID: Instruction decode/
register file read
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Pipelined Datapath

Can you find a problem even if there are no dependencies?  

What instructions can we execute to manifest the problem?
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Corrected Datapath
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Graphically Representing 

Pipelines

Can help with answering questions like:

– how many cycles does it take to execute this code?

– what is the ALU doing during cycle 4?

– use this representation to help understand datapaths
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Pipeline Control
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• We have 5 stages.  What needs to be controlled in each 

stage?

– Instruction Fetch and PC Increment

– Instruction Decode / Register Fetch

– Execution

– Memory Stage

– Write Back

• How would control be handled in an automobile plant?

– a fancy control center telling everyone what to do?

– should we use a finite state machine?

Pipeline control



• Pass control signals along just like the data
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Datapath with Control
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