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Pipelining: the laundry analogy




Pipelining

Improve performance by increasing instruction throughput
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Ideal speedup is number of stages in the pipeline. Do we achieve this?



Pipelining

What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

We'll build a simple pipeline and look at these issues

We'll talk about modern processors and what really makes it hard:
— exception handling

— trying to improve performance with out-of-order execution, etc.
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What do we need to add to actually split the datapath into stages?



Pipelined Datapath
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Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?



orrected Datapath
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Graphically Representing
Pipelines
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Can help with answering questions like:
— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 47
— use this representation to help understand datapaths



Pipeline Control
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Pipeline control

 We have 5 stages. What needs to be controlled in each
stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back

« How would control be handled in an automobile plant?
— a fancy control center telling everyone what to do?
— should we use a finite state machine?



Pipeline Control

Pass control signals along just like the data
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Datapath with Control
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