Pipelining |

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 8, October 1, 2007

Pipelining: the laundry analogy

Pipelining

Improve performance by increasing instruction throughput

Program

execution 200 400 600 800 1000 1200 1400 1600 1800
order Time T T T T T T T >
(in instructions)
w $1, 100($0)| "IN | Ay | DAl gy
Note:
w $2, 200(30) 800 nsnucion [T gy [Data [py o ,
' ps fetch amess timing assumptions changed

w $3, 300($0) 800 ps hein.con for this example

—

800 ps
Program
execution 200 400 600 800 1000 1200 1400 R

Time T T T T T T T
order
(in instructions)
w $1, 100(30) |BWAN |Rg| Ay | DA IRy
| b
w $2, 200(30) 200 ps | v |Rg| AU | DAl Ry
| o

lw $3, 300($0) 200 ps | AN 1Ry | AU | Dald Ry

200ps 200ps 200ps 200ps 200 ps

Ideal speedup is number of stages in the pipeline. Do we achieve this?

Pipelining

What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

We'll build a simple pipeline and look at these issues

We'll talk about modern processors and what really makes it hard:
— exception handling

— trying to improve performance with out-of-order execution, etc.

Basic ldea

WB: Write back

EX: Execute/
address calculation

IF: Instruction fetch

/AN s

......... L
M
- N &1
mw) mﬁm WMU
BB Sheg @

.

What do we need to add to actually split the datapath into stages?

Pipelined Datapath

IF/ID ID/EX EX/MEM MEM/WB

o | -
-

Add Add >
Shift result
left 2

PC »| Address Read
5 > register 1 Read >
-E data 1
. Zero » —>
Instruction = register 2 _ ALU
— = Registers ALU Read
memary - White e %2 > -2 result]— >| Address da [|— 2
" | register _{C< / - _>_:<
> | Wite memory
data >

Wite
- " | data
16 Sign | 32 >
" @__» B

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

orrected Datapath

MEM/WB

IF/ID ID/EX EX/MEM
E > i '\‘
—L o ——
Shift resu
left 2
Address - Read
S " | register 1 Read
B data 1 -
£] _|Red Zero}—» —
Instruction S1 | regster ZR sers ALU pp
memory . —_ Wi €9 Read > >/ result o Address
> ot deta 2 =
register = /
> | WWite
daa
Wite
> daia
16 Sign |

| extend

anwo

Graphically Representing
Pipelines

Time (in clock cycles)

Program |

execution cCcCl1, CC2, CC3 , CC4 , CC5 , CC6 | CCT7
order | | I I I I
(in instructions) : : : : : :
| |~] | | = | |
lw $1, 100(30) —f—E{R_GE >ALUH—DM— R |
| | I I l I
| | | | | |
| | | | | |
| I —p— I I -
lw $2, 200($0) i @—u—ql Reg | SALUL- &Y —Reg |
		o		
lw $3, 300($0)		Elv]—;—dReg T SALUH-IoM—+—Reg		
L —— — 1				
" A g				

Can help with answering questions like:
— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 47
— use this representation to help understand datapaths

Pipeline Control

lxnwo

PC

MemtoReg

Oxnwl

PCSrc
IF/ID ID/EX EX/MEM MEM/WB
[r———
Add > \‘
Add Add
. result B
Shift ranch
left 2 / L ;
RegWrite [
|
Address Read
-é register 1 ﬁl MemWrite
5 Read - |- :
. £ register 2
Instruction ;
memory — - A > Address E&ag —
ister data 2
reg Deta
| data ermory
White
data
Instruction
(15p0) 16 Sign | 32 6 !
| extend MemRead

ntE)

2| ALUOp

X
Instruction
(15D11)

—_—

Pipeline control

 We have 5 stages. What needs to be controlled in each
stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back

« How would control be handled in an automobile plant?
— a fancy control center telling everyone what to do?
— should we use a finite state machine?

Pipeline Control

Pass control signals along just like the data

Execution/Address Calculation | Memory access stage | stage control
stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg |Mem to

Instruction Dst Opl Op0 Src__|Branch| Read [Write | write Reg
R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
SwW X 0 0 1 0 0 1 0 X
begq X 0 1 0 1 0 0 0 X

Instructio_n>

IF/ID ID/IEX EX/IMEM MEM/WB

Datapath with Control

PCSrc
ID/EX
we LEX/MEM
WB
Control M | MEM/WE
IF/ID EX M Wel_
—
Add \
4 —] Add Ad?
[} Shift y Branch
s left 2 ALUSIC
54 —
(=) 14 2
= = g
X PC Address s Read € @
5 register 1 Read] 2
=} daia 1 = @
B Reed — =
Instruction £ regiser 2Registers ALU ZAGI}_rL(J] Read
memary &?;dz fog result Address dam ["] %
> . c
register _% Data X
| data oty
Wite
data
Instruction
[15-0] 16 sign | 32 6 [ALU >
\
\ @ X > control MemRead
Instruction
[20-16]
o
£
Instruction X
[15-11]
—_—

RegDst

