
Pipelining I

Fall 2007

CS 502: Computers and Communications Technology

Lecture 8, October 1, 2007

Instructor: Dmitri A. Gusev

Pipelining

• Improve performance by increasing instruction throughput

Ideal speedup is number of stages in the pipeline. Do we achieve this?

Program

execution

order

(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400 1600 1800

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program

execution

order

(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

Instruction
fetch

Reg ALU Data
access Reg

Reg ALU Data
access Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

Note:

timing assumptions changed

for this example

Pipelining

• What makes it easy

– all instructions are the same length

– just a few instruction formats

– memory operands appear only in loads and stores

• What makes it hard?

– structural hazards: suppose we had only one memory

– control hazards: need to worry about branch instructions

– data hazards: an instruction depends on a previous instruction

• We’ll build a simple pipeline and look at these issues

• We’ll talk about modern processors and what really makes it hard:

– exception handling

– trying to improve performance with out-of-order execution, etc.

Basic Idea

What do we need to add to actually split the datapath into stages?

WB: Write backMEM: Memory accessIF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

Address

Write
data

Read
data

Data
Memory

Read
register 1
Read
register 2

Write
register
Write
data

Registers

Read
data 1

Read
data 2

ALU
Zero

ALU
result

ADDAdd
result

Shift
left 2

Address

Instruction

Instruction
memory

Add

4

PC

Sign
extend

16 32

Pipelined Datapath

Can you find a problem even if there are no dependencies?

What instructions can we execute to manifest the problem?

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers
Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EXIF/ID EX/MEM MEM/WB

16 32

Corrected Datapath

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers
Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EXIF/ID EX/MEM MEM/WB

16 32

Graphically Representing

Pipelines

Can help with answering questions like:

– how many cycles does it take to execute this code?

– what is the ALU doing during cycle 4?

– use this representation to help understand datapaths

Program

execution

order

(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC7

IM DMReg RegALU

IM DMReg RegALU

IM DMReg RegALU

Pipeline Control

MemWrite

PCSrc

MemtoReg

MemRead

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Instruction
(15Ð0)

Instruction
(20Ð16)

Instruction
(15Ð11)

Read
data 1

Read
data 2

Registers
Address

Write
data

Read
data

Data
memory

Add Add
result

Add ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EXIF/ID EX/MEM MEM/WB

16 32 6
ALU

control

RegDst

ALUOp

ALUSrc

RegWrite

Branch

• We have 5 stages. What needs to be controlled in each

stage?

– Instruction Fetch and PC Increment

– Instruction Decode / Register Fetch

– Execution

– Memory Stage

– Write Back

• How would control be handled in an automobile plant?

– a fancy control center telling everyone what to do?

– should we use a finite state machine?

Pipeline control

• Pass control signals along just like the data

Pipeline Control

Execution/Address Calculation

stage control lines

Memory access stage

control lines

Write-back

stage control

lines

Instruction

Reg

Dst

ALU

Op1

ALU

Op0

ALU

Src Branch

Mem

Read

Mem

Write

Reg

write

Mem to

Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Datapath with Control

WB

M

EX

WB

M WB

PCSrc

MemRead

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Instruction
[15–0]

Instruction
[20–16]

Instruction
[15–11]

Write
register

Write
data

Read
data 1

Read
data 2

Registers
Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EX

IF/ID

EX/MEM

MEM/WB

16 632
ALU

control

RegDst

ALUOp

ALUSrc

Branch

Control

