
CPU Datapath And

Control II

Fall 2007

CS 502: Computers and Communications

Lecture 7, September 26, 2007

Instructor: Dmitri A. Gusev

Control

• Selecting the operations to perform (ALU, read/write, etc.)

• Controlling the flow of data (multiplexor inputs)

• Information comes from the 32 bits of the instruction

• Example:

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• ALU's operation based on instruction type and function code

• e.g., what should the ALU do with this instruction

• Example: lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

• ALU control input

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

• Why is the code for subtract 0110 and not 0011?

Control (cont’d)

• Must describe hardware to compute 4-bit ALU control input

– given instruction type

00 = lw, sw

01 = beq,

10 = arithmetic

– function code for arithmetic

• Describe it using a truth table (can turn into gates):

ALUOp
computed from instruction type

Control

Instruction RegDst ALUSrc

Memto-

Reg

Reg

Write

Mem

Read

Mem

Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift

left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU

control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst

Branch

MemRead

MemtoReg

ALUOp

MemWrite

ALUSrc

RegWrite

Control

Control (cont’d)
• Simple combinational logic (truth tables)

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

• All of the logic is combinational

• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away

– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

State

element

1

State

element

2

Combinational logic

Clock cycle

Single Cycle Implementation
• Calculate cycle time assuming negligible delays except:

– memory (200ps),

ALU and adders (100ps),

register file access (50ps)

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation
4

Sign
extend

16 32

Instruction
ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift

left 2

4

Read
address

Instruction
memory

PC

Where we are headed

• Single Cycle Problems:

– what if we had a more complicated instruction like floating point?

– wasteful of area

• One Solution:

– use a “smaller” cycle time

– have different instructions take different numbers of cycles

– a “multicycle” datapath:

Data

Register #

Register #

Register #

PC Address

Instruction
or dataMemory

Registers ALU

Instruction

register

Memory

data

register

ALUOut

A

B
Data

• We will be reusing functional units

– ALU used to compute address and to

increment PC

– Memory used for instruction and data

• Our control signals will not be determined

directly by instruction

– e.g., what should the ALU do for a “subtract”

instruction?

• We’ll use a finite state machine for control

Multicycle Approach

• Break up the instructions into steps, each step takes a cycle

– balance the amount of work to be done

– restrict each cycle to use only one major functional unit

• At the end of a cycle

– store values for use in later cycles (easiest thing to do)

– introduce additional “internal” registers

Multicycle Approach

Read
register 1

Read
register 2

Write
register

Write
data

Registers
ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift

left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

• Use PC to get instruction and put it in the Instruction

Register.

• Increment the PC by 4 and put the result back in the PC.

• Can be described succinctly using RTL "Register-Transfer

Language"

IR <= Memory[PC];

PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

• Read registers rs and rt in case we need them

• Compute the branch address in case the instruction is a

branch

• RTL:

A <= Reg[IR[25:21]];

B <= Reg[IR[20:16]];

ALUOut <= PC + (sign-extend(IR[15:0])

<< 2);

• We aren't setting any control lines based on the

instruction type

(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and

Register Fetch

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

• R-type:

ALUOut <= A op B;

• Branch:

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)

• Loads and stores access memory

MDR <= Memory[ALUOut];

or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on

the edge

Step 4 (R-type or memory-

access)

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Write-back step

Summary:

• Value of control signals is dependent upon:

– what instruction is being executed

– which step is being performed

• Use the information we’ve accumulated to specify a

finite state machine

– specify the finite state machine graphically, or

– use microprogramming

• Implementation can be derived from specification

Implementing the Control

Graphical Specification of FSM
MemRead

ALUSrcA = 0

IorD = 0

IRWrite

ALUSrcB = 01

ALUOp = 00

PCWrite

PCSource = 00

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

MemRead

IorD = 1

MemWrite

IorD = 1

RegDst = 1

RegWrite

MemtoReg = 0

RegDst = 1

RegWrite

MemtoReg = 0

PCWrite

PCSource = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCWriteCond

PCSource = 01

Instruction decode/

register fetch

Instruction fetch

0 1

Start

Jump

completion

9862

3

4

5 7

Memory read

completon step

R-type completion

Memory

access

Memory

access

Execution

Branch

completion

Memory address

computation

Chapter 5 Summary

• If we understand the instructions…

We can design a simple processor!

• If instructions take different amounts of time, the multi-

cycle approach is better

• Datapath implemented using:

– Combinational logic for arithmetic

– State holding elements to remember bits

• Control implemented using:

– Combinational logic for single-cycle implementation

– Finite state machine for multi-cycle implementation

