CPU Datapath And
Control I

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 7, September 26, 2007

Control

« Selecting the operations to perform (ALU, read/write, etc.)
« Controlling the flow of data (multiplexor inputs)

« Information comes from the 32 bits of the instruction
 Example:

add $8, $17, $18 Instruction Format:;

000000 10001)| 10010} 01000 00000} 100000

op rs rt rd shamt funct

* ALU's operation based on instruction type and function code

Control (cont’d)

* e.g., what should the ALU do with this instruction
« Example: lw $1, 100($2)

35

2 1 100

op

IS rt 16 bit offset

« ALU control input

0000
0001
0010
0110
0111
1100

AND

OR

add

subtract
set-on—-less—-than
NOR

 Why is the code for subtract 0110 and not 00117

Control

Must describe hardware to compute 4-bit ALU control input
— given instruction type

00 = lw, sw

01 = beq, T ALUOp

10 = arithmetic / computed from instruction type
— function code for arithmetic

Describe it using a truth table (can turn into gates):

B — T —
Amow | Awow | vs [F [[k W[R0
% % % % % 0010

) 0 X

X 1 X X X X X X 0110
1 X X X]]]] Q010
1 X X X 0 0 1 0 0110
1 X X X 0 1 0 0 L]
1 X X X 0 1 0 1 Qa1
1 X X X 1] 1] 0111

FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code feld. Only the entries for which the ALL control is asserted are shown.
Some don't-care entries have been added. For example, the ALUCp does not use the enceding 11, so the
truth table can contain entries 1 and X1, rather than 10 and 01. Alsc, when the function field is used, the
first two bits (F5 and F4) of these instructions are always 10, so they are don't-care terms and are replaced
with 207 in the truth table.

0
Add \ "
X
ALU
4™ Add result !
//\J RegDst _> /
/ Branch
‘f‘ \ MemRead
Instruction [31-26] | l MemtoReg
— Control [TALUOp
\ |__MemWrite
\ ALUSIC
\ RegWrite
]
Instruction [25-21] Read
pC Lo 5:;%85 register 1. .
Instruction [20:16] Read data 1
|nst|’[|“|3(:;fi00r:]| e 0 registerZ ALU iirs ong
i M i Read (0 Address o 1
Instruction | | | nstruction [15-11] | x \r/ggit;er data 2 M result data M
memory 1 u X
.| Write q :E(0
data Registers Data
Write memory
data
Instruction [15-0] 16 @ 32 J I
Instruction [5-0]
Memto- | Reg | Mem | Mem
Instruction | RegDst | ALUSrc | Redq |Write | Read | Write | Branch | ALUOp1 | ALUpPO
R-format 1 0 0 1 0 0 0 1 0
1w 0 1 1 1 1 0 0 0 0
SwW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

l

Control (cont’d)

« Simple combinational logic (truth tables)

AAAAAA

ALUOp1
- .
1

F1
)
o) >

O k
R-format Iw

p
Opo0 .
Jo] g 000

T (o] [o]

N

RRRRRR

eeeeeeee

eeeeeee

AAAAAA

Our Simple Control Structure

« All of the logic is combinational

« We wait for everything to settle down, and the right thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write

* Cycle time determined by length of the longest path

State State
element Combinational logic —— | element
1 2

Clock cycle

We are ignhoring some details like setup and hold times

Single Cycle Implementation

Calculate cycle time assuming negligible delays except:

— memory (200ps),
ALU and adders (100ps),
register file access (50ps)

PCSrc
M
Add _ ¥
X
— ALU
! Add result
|
Read ALUSIC ALU operati
Read > - peration
— PC 8> _ idress register 1 Read | .
data 1l
. - EZ?Sterz Zero MemtoReg
Instruction |- - Registers read ALU AL o read
i g data
Instruction register data 2 M result M
memory g)Li
—»| Write p
data Data
i Write memory
RegWrite data
16 . 32 MemRead
Sign
extend

Where we are headed

« Single Cycle Problems:
— what if we had a more complicated instruction like floating point?
— wasteful of area

* One Solution:
— use a “smaller” cycle time
— have different instructions take different numbers of cycles
— a “multicycle” datapath:

Instruction
i register
> pC He»| Address 9 Data »E} v
Instruction Register #
i o> -
Memory O data ¢ _ Registers ALU ALUOuUt
Regqister #

register

Memory _.E >
A
|->Data | da@a e Register #

Multicycle Approach

* We will be reusing functional units

— ALU used to compute address and to
iIncrement PC

— Memory used for instruction and data

« Our control signals will not be determined
directly by instruction

— e.g., what should the ALU do for a “subtract”
Instruction?

 We'll use a finite state machine for control

Finite state machines

* Finite state machines:
— a set of states and
— next state function (determined by current state and the input)
— output function (determined by current state and possibly input)

Mext—
state

MNext-stated
function

Cument stafe pe——

T

Clock
Inputs]

Output™

function

» Outputs

— We’ll use a Moore machine (output based only on current state)

Multicycle Approach

Break up the instructions into steps, each step takes a cycle

balance the amount of work to be done

— restrict each cycle to use only one major functional unit
At the end of a cycle
— store values for use in later cycles (easiest thing to do)
— introduce additional “internal” registers

PC

|

Address

Memory

MemData ¢+

Write
data

Instruction Read C’JVI
[25-21] register 1 Read _» vl
Instruction Read data 1 1x
(20-16] 0 register 2
Instruction | M Wi Registers
[15-0] | |Instruction| u rite
[15-11] X register dE?aag _>?| /O__>
Instruction 1 _] 41 M
register Write u
(I)VI data 2 x
Instruction 3
[15-0] u N
B
Memor 16 . 32
g [+
register

Zero
ALU ALU

result

ALUOut

Five Execution Steps

Instruction Fetch

Instruction Decode and Register Fetch

Execution, Memory Address Computation, or Branch Completion
Memory Access or R-type instruction completion

Write-back step

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!

Step 1: Instruction Fetch

« Use PC to get instruction and put it in the Instruction
Register.

* Increment the PC by 4 and put the result back in the PC.

« Can be described succinctly using RTL "Register-Transfer
Language”

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 2: Instruction Decode and
Register Fetch

Read registers rs and rt in case we need them

Compute the branch address in case the instruction is a
branch

 RTL:

A <= Reg[IR[25:21]];

B <= Reg[IR[20:16]];

ALUOut <= PC + (sign-extend(IR[15:0])
<< 2);

« We aren't setting any control lines based on the
Instruction type
(we are busy "decoding" it in our control logic)

Step 3 (instruction dependent)

ALU is performing one of three functions, based on instruction type

Memory Reference:

ALUOut <= A + sign-extend (IR[15:01]);
R-type:

ALUOut <= A op B;

Branch:

1f (A==B) PC <= ALUOut;

Step 4 (R-type or memory-
access)

« Loads and stores access memory

MDR <= Memory [ALUOut];
or
Memory [ALUOut] <= B;

* R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on
the edge

Write-back step

e Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Summary:

Action for R4iypa Action for mamory- Action for
Stap nama instructions raferanca instructions jumps

Instruction fateh IR <= Mamory[PC]
PC <= PC + 4
Instruction decods, /reglster Tetzh A <= Rag [IR[25:21]]

B == Reg [IR[20:16]]
ALLOUL <= PC + (slgriextend (IR[15:0]) << 2)

Executlon, address computation, | ALUOUL <= A op B ALUCHE == A + Slgn-extend It (A =B) PC <= {PC [31:28],
branch ump completion (IR[L5:0]) PC <= ALUOUt {IR[25:0]],2"bO0)
Memaory access of Rype Reg [IR[L5111]] <= Load: MOR <= Memory[ALUGut]
completion ALLIUT ar

Stora: Memory [ALUOUt] <= B
Memary read completion Load: Reg[IR[20:16]] <= MDR

AGURE 530 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first twa steps are independent of the instruction class. After these steps, an instruction takes from one to three more oveles to complets, depending on
the instruction class. The empty entries for the Memory access step or the Mermory read completion step indicate that the particular instruction class
takes tewer cvcles. In a multicycle implementation, o new mstruction will be started as soon s the current instruction completes, so these cvcles are
not idle or wasted. As mentioned earlier, the register file actually reads every oycle, but as long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for a branch or B-type instruction, is the same as
the valus stored imto B during the Execution stage and then used in the Memory access stage for a store word instruction.

Implementing the Control

« Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed

« Use the information we've accumulated to specify a
finite state machine

— specify the finite state machine graphically, or
— use microprogramming

* Implementation can be derived from specification

Graphical Specification of FSM

0

Instruction fetch Instruction decode/

register fetch

MemRead
ALUSrcA=0
lorD=0

IRWrite ALUSrcA=0
Start —— ALUSFCB = 01 ALUSrcB =11
ALUOp = 00 ALUOp =00
PCWrite

PCSource = 00

Memory address
computation

Branch
completion

Jump
completion

Execution

ALUSrcA=1
ALUSrcB = 10
ALUOp = 00

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCWriteCond
PCSource =01

ALUSIcA=1
ALUSrcB =00
ALUOp =10

PCWrite
PCSource = 10

3

1

o | Memory Memory
O ¢ access access

R-type completion

MemRead MemWrite RegDst = 1
lorD=1 lorD=1 RegWrite
MemtoReg = 0

Memory read
completon step

RegDst =1
RegWrite
MemtoReg =0

Chapter 5 Summary

If we understand the instructions...
We can design a simple processor!

If Instructions take different amounts of time, the multi-
cycle approach is better

Datapath implemented using:

— Combinational logic for arithmetic

— State holding elements to remember bits

Control implemented using:

— Combinational logic for single-cycle implementation

— Finite state machine for multi-cycle implementation

