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The Processor: Datapath &
Control

We're ready to look at an implementation of the MIPS

Simplified to contain only:

— memory-reference instructions: 1w, sw

— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beqg, J

Generic Implementation:

— use the program counter (PC) to supply instruction address
— get the instruction from memory

— read registers

— use the instruction to decide exactly what to do

All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?



More Implementation Detalils

« Abstract / Simplified View:
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» Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)



State Elements

« Unclocked vs. Clocked
* Clocks used in synchronous logic
— when should an element that contains state be updated?

Falling edge

cycle time
- >

Clock period Rising edge




An unclocked state element

« The set-reset latch (a.k.a. “S-R flip-flop”)
— output depends on present inputs and also on past inputs
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Latches and Flip-flops

Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

Change of state (value) is based on the clock
Latches: whenever the inputs change, and the clock is asserted

Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

"logically true",
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written



D-latch

 Two inputs:

— the data value to be stored (D)

— the clock signal (C) indicating when to read & store D
 Two outputs:

— the value of the internal state (Q) and it's complement
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D

D flip-flop

« Output changes only on the clock edge
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Circuits as Memory (cont'd)
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Positive edge-triggered D flip-flop: (a) symbol; (b) function table.

D flip-flops are grouped together into registers to store
multi-bit quantities in a computer.



Our Implementation

* An edge triggered methodology

« Typical execution:

— read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements
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Register File

Built using D flip-flops
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Register File

 Note: we still use the real clock to determine when to write
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Simple Implementation

 Include the functional units we need for each instruction
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Building the Datapath

Use multiplexors to stitch them together
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