CPU Datapath And Control I

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 6, September 24, 2007

The Processor: Datapath & Control

- We're ready to look at an implementation of the MIPS
- Simplified to contain only:
 - memory-reference instructions: lw, sw
 - arithmetic-logical instructions: add, sub, and, or, slt
 - control flow instructions: beq, j
- Generic Implementation:
 - use the program counter (PC) to supply instruction address
 - get the instruction from memory
 - read registers
 - use the instruction to decide exactly what to do
- All instructions use the ALU after reading the registers
 Why? memory-reference? arithmetic? control flow?

More Implementation Details

• Abstract / Simplified View:

- Two types of functional units:
 - elements that operate on data values (combinational)
 - elements that contain state (sequential)

State Elements

- Unclocked vs. Clocked
- Clocks used in synchronous logic
 - when should an element that contains state be updated?

An unclocked state element

- The set-reset latch (a.k.a. "S-R flip-flop")
 - output depends on present inputs and also on past inputs

Latches and Flip-flops

- Output is equal to the stored value inside the element (don't need to ask for permission to look at the value)
- Change of state (value) is based on the clock
- Latches: whenever the inputs change, and the clock is asserted
- Flip-flop: state changes only on a clock edge (edge-triggered methodology)

"logically true",

— could mean electrically low

A clocking methodology defines when signals can be read and written — wouldn't want to read a signal at the same time it was being written

D-latch

- Two inputs:
 - the data value to be stored (D)
 - the clock signal (C) indicating when to read & store D
- Two outputs:
 - the value of the internal state (Q) and it's complement

D flip-flop

• Output changes only on the clock edge

Circuits as Memory (cont'd)

Positive edge-triggered D flip-flop: (a) symbol; (b) function table.

D flip-flops are grouped together into *registers* to store multi-bit quantities in a computer.

Our Implementation

- An edge triggered methodology
- Typical execution:
 - read contents of some state elements,
 - send values through some combinational logic
 - write results to one or more state elements

Register File

Register File

• Note: we still use the real clock to determine when to write

Simple Implementation

Include the functional units we need for each instruction

Building the Datapath

• Use multiplexors to stitch them together

