CPU Datapath And
Control |

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 6, September 24, 2007

The Processor: Datapath &
Control

We're ready to look at an implementation of the MIPS

Simplified to contain only:

— memory-reference instructions: 1w, sw

— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beqg, J

Generic Implementation:

— use the program counter (PC) to supply instruction address
— get the instruction from memory

— read registers

— use the instruction to decide exactly what to do

All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

More Implementation Detalils

« Abstract / Simplified View:

o—>
4 —»
Add N Add
I-» Data \
Register #
- PC [Address Instruction Registers ALU Address

_ Register # Data

Instruction >
_ \ memory
memory Register #
> Data

» Two types of functional units:
— elements that operate on data values (combinational)
— elements that contain state (sequential)

State Elements

« Unclocked vs. Clocked
* Clocks used in synchronous logic
— when should an element that contains state be updated?

Falling edge

cycle time
- >

Clock period Rising edge

An unclocked state element

« The set-reset latch (a.k.a. “S-R flip-flop”)
— output depends on present inputs and also on past inputs

R

Ol

Latches and Flip-flops

Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

Change of state (value) is based on the clock
Latches: whenever the inputs change, and the clock is asserted

Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

"logically true",
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

D-latch

 Two inputs:

— the data value to be stored (D)

— the clock signal (C) indicating when to read & store D
 Two outputs:

— the value of the internal state (Q) and it's complement

C ¢

o — |
N - Q
c— 1 1
o |
- Q

D

D flip-flop

« Output changes only on the clock edge

D

C

D
latch

Q

.

D

C

D
latch

Q

Q

o

Circuits as Memory (cont'd)

CLK D Q
—D Qr— ; -0 0
—ICLK 4 1
0 X last Q
1 X last Q
(b)

(a)

Positive edge-triggered D flip-flop: (a) symbol; (b) function table.

D flip-flops are grouped together into registers to store
multi-bit quantities in a computer.

Our Implementation

* An edge triggered methodology

« Typical execution:

— read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements

Clock cycle

State
element
1

Combinational logic —_—

State
element
2

Register File

Built using D flip-flops

Read register
number 1

Read register

number 2
] Register file
Write
] _
register
Write
] .
data Write

Read
data 1

Read
data 2

Read register
number 1

Read register
number 2

Register 0

Register 1

Register n — 2

Registern -1

Ld

\

\

Y

>

Y

Y

Y

-

Read data 1

Read data 2

Register File

 Note: we still use the real clock to determine when to write

Write

Register number

Register data

n-to-2N

“| decoder

n-1

n

Register 0

Register 1

C

D

Register n — 2

Ty Ty

C

D

Registern—1

Simple Implementation

 Include the functional units we need for each instruction

Instruction
address

Instructiond
memory

[nSiruCtion m—

a. Instruction memary

[r. Program counter

~ g —_
5 Fie:_sd_
register 1 T+ ™
Readl
RegisterZ) _o | ReadZ data 1
numkers register 2
_ Registers Data
o | Writer
register 1
e Read .
D | WriteD data2
43 < =* data
b
a. Registers

>Add Sum

c. Adder

Zero
> ALU AL
result

b ALU

Address Read
data

Writed Datal

data memony

a. Data memory unit

T 16 m 32
kY =Nz s

A @ W

k. Sign-extension unit

Multiplexor

Building the Datapath

Use multiplexors to stitch them together

Add

PCSrc

Read
address

Instruction

Instruction
memory

Add

ALU
result

xc<Z

ALU operation

MemWrite

Address

Write

Re@‘i . ALUSIC
register Read | :
Read data 1
register 2

Registers
Write dF;?;g
register '\Lj'
Write X
data

RegWrite
16 Sign 32

extend

Y

data

Read
data

Data
memory

MemRead

MemtoReg

xc<Z

