
Computer Arithmetic And

ALU Design II

Fall 2007

CS 502: Computers and Communications

Lecture 5, September 19, 2007

Instructor: Dmitri A. Gusev

More Arithmetic Instructions

Instruction Example Meaning Comments

multiply mult $s2,$s3 Hi,Lo = $s2*$s3 64-bit signed product

multiply unsigned multu $s2,$s3 Hi,Lo = $s2*$s3 64-bit unsigned product

divide div $s2,$s3 Lo = $s2/$s3,

Hi = $s2 mod $s3

Lo = quotient,

Hi = remainder

divide unsigned divu $s2,$s3 Lo = $s2/$s3,

Hi = $s2 mod $s3

Unsigned quotient and

remainder

move from Hi mfhi $s1 $s1 = Hi Used to get copy of Hi

move from Lo mflo $s1 $s2 = Lo Used to get copy of Lo

Floating Point (a brief look)
• We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576  109

• Representation:

– sign, exponent, significand: (–1)sign  significand  2exponent

• the floating point is binary point, no longer decimal!

– more bits for significand gives more accuracy

– more bits for exponent increases range

– normalized: 1.xxxxxxxxx2 * 2yyyy

• IEEE 754 floating point standard:

– single precision: 8 bit exponent, 23 bit significand

– double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point

standard
• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier

– all 0s is smallest exponent all 1s is largest

– bias of 127 for single precision and 1023 for double precision

– summary: (–1)sign  (1+significand)  2exponent – bias

• Example:

– decimal: -.75 = - (½ + ¼)

– binary: -.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110

– IEEE single precision:
10111111010000000000000000000000

Floating point addition

•

Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1. Compare the exponents of the two numbers.

Shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

No Exception

Small ALU

Exponent

difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or

decrement
Shift left or right

Rounding hardware

ExponentSign Fraction

Floating Point Complexities

• Operations are somewhat more complicated (see text)

• In addition to overflow we can have “underflow”

• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “infinity”

– zero divide by zero yields “not a number”

– other complexities

• Implementing the standard can be tricky

• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

Floating-Point Multiplication

Example: 1.110*1010*9.200*10-5

1. (10+bias)+(-5+bias) – bias = 5+bias

2. 1.110*9.200=10.212000 [*105]

3. 1.0212*106

4. 1.021*106

5. +1.021*106

Floating-Point Instructions in MIPS

• 32 floating-point registers: $f0,$f1,…,$f31

• The floating-point registers are used in

pairs for double precision numbers

• Instructions:
Floating-Point single double

add add.s add.d

subtract sub.s sub.d

multiply mul.s mul.d

divide div.s div.d

Multiplexor

Use of Multiplexor

