Computer Arithmetic And
ALU Design Il

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 5, September 19, 2007



More Arithmetic Instructions

multiply mult $s2,$s3  Hi,Lo = $s2*$s3  64-bit signed product
multiply unsigned multu $s2,$s3 Hi,Lo = $s2*$s3  64-bit unsigned product
divide div $s2,$s3 Lo = $52/$s3, Lo = quotient,

Hi = $s2 mod $s3 Hi = remainder
divide unsigned divu $s2,$s3 Lo = $s2/$s3, Unsigned quotient and

Hi = $s2 mod $s3 remainder
move from Hi mfhi $s1 $s1 = Hi Used to get copy of Hi
move from Lo mflo $s1 $s2 =Lo Used to get copy of Lo



Floating Point (a brief look)

We need a way to represent
— numbers with fractions, e.g., 3.1416
— very small numbers, e.g., .000000001
— very large numbers, e.g., 3.15576 x 10°
Representation:
— sign, exponent, significand: (=1)%9" x significand x 2exponent
« the floating point is binary point, no longer decimal!
— more bits for significand gives more accuracy
— more bits for exponent increases range
— normalized: 1.XXXXXXXXX, * 2Y¥¥Y
IEEE 754 floating point standard:
— single precision: 8 bit exponent, 23 bit significand
— double precision: 11 bit exponent, 52 bit significand



IEEE 754 floating-point
standard

« Leading “17 bit of significand is implicit

« Exponent is “biased” to make sorting easier
— all Os is smallest exponent all 1s is largest
— bias of 127 for single precision and 1023 for double precision
— summary: (=1)59" x (1+significand) x 2exponent —bias

« Example:

— decimal: -.75=-(Y2+ %)
— binary: -.11=-1.1x 21
— floating point: exponent =126 =01111110

— |EEE single precision:
10111111010000000000000000000000



oating point addition

| Sign | Exponent | Fraction | | SignI Exponent | Fraction

\

N

Small ALU

Exponent

difference

Yy Vv Y Vv Yy v
o1 )= >0 1)|—>(0 1)
\
Y
Control »| Shift right
AA 4 Y
N
Big ALU
Y Y
—(0 1 ———>(0__1
|, | Incrementor | Lyt ghift jeft or right
decrement
5
»| Rounding hardware
\ Y Y
Sign | Exponent Fraction

( Start )

\

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

Y
2. Add the significands

>

\

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

|

Overflow or
underflow?

Y

( Exception )

4. Round the significand to the appropriate
number of bits

Still normalized?




Floating Point Complexities

Operations are somewhat more complicated (see text)
In addition to overflow we can have “underflow”
Accuracy can be a big problem

— |EEE 754 keeps two extra bits, guard and round

— four rounding modes

— positive divided by zero yields “infinity”

— zero divide by zero yields “not a number”

— other complexities

Implementing the standard can be tricky
Not using the standard can be even worse
— see text for description of 80x86 and Pentium bug!



Floating-Point Multiplication
D)

1

ngﬁmeuwﬁ::::m“ﬁzm Example: 1.110*1019%9.200*10>
13t new bissed sponet (10+bias)+(-5+bias) — bias = 5+bias
1.110*9.200=10.212000 [*10°]

4
| 2. Mutioly the significands |

akhwbhE

- 1.0212*106
Y 1.021*106
3. Normaize the product if necessary, shifing
& right and incrementing the axpanent +1021*106

4. Round the significand to the appropeiate
number of bits

l

No
St normalized?
Yes

5. Set the sign of the product to pastve If the
signs of the oniginal operands are the same;
¥ thay di¥er make tha sign negative

CoD



Floating-Point Instructions in MIPS

« 32 floating-point registers: $f0,$f1,...,$f31

* The floating-point registers are used In
pairs for double precision numbers

e |nstructions:

Floating-Point

add add.s add.d
subtract sub.s sub.d
multiply mul.s mul.d

divide div.s div.d



Multiplexor

Selects one of the inputs to be the output, based on a control input

S
,»L, note: we call this a 2-input mux
A, even though it has 3 inputs!
—_—— C
E — 4
L

Lets build our ALU using a MUX:



Use of Multiplexor

Operation

a J
0
Rasult
)
b

FIGURE B.5.1 The 1-bit logical unit for AND and OR.



Different Implementations

* Not easy to decide the “best” way to build something

— Don't want too many inputs to a single gate

— Dont want to have to go through too many gates

— for our purposes, ease of comprehension is important
+ Let's look at a 1-bit ALU for addition:

ab+ac, +bc,
a Xor b xor g,

ont
sSum

+ How could we build a 1-bit ALU for add, and, and or?
+ How could we build a 32-bit ALU?



Building a 32 bit ALU

S
L o1
—

—— REELR

Canmyou

al

o

ait

o1

— =

—

¥

Carryin

|

Carmyln
—————————— Rasull

ALLM

Carmyoul|

Carryin
EEEEEEEE—— — ]
ALU1 ==l

Carmyoul]

4

Carmyin

I — 3
ALL2 A=EUl2

CarmyCut]

|

Carryln

—————————+ AUl
AL 2EUlt3




What about subtraction (a-b) ?

+ Two's complement approach: just negate b and add.
* How do we negate?

Binwart Camyln Dperation

all —=| Camyln
oD —= ALLID + Resulld

« A very clever solution: Lees

camycul

.
Binvert Dperation | Camyin
01— ALLS = Resuitl

Camyin D —s| Loss

Camycuy

!
PN
n}

*
Camyin

— 1 DI —=| ALLZ Resulz
.—.-L__ —— Fasui [ —=| Les=
Camycuy

[u] + —3 ¥

’ 1 ;-:an'g'ln '|

1. e :3T!|'|'I — & Resullit
carryaut B3t —s| ALU3T Sat
0 —= LeEes = Jyarfiow




