Computer Arithmetic And ALU Design II

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 5, September 19, 2007

More Arithmetic Instructions

Instruction	Example	Meaning	Comments
multiply	mult \$s2,\$s3	Hi,Lo = \$s2*\$s3	64-bit signed product
multiply unsigned	multu \$s2,\$s3	Hi,Lo = \$s2*\$s3	64-bit unsigned product
divide	div \$s2,\$s3	Lo = \$s2/\$s3, Hi = \$s2 mod \$s3	Lo = quotient, Hi = remainder
divide unsigned	divu \$s2,\$s3	Lo = \$s2/\$s3, Hi = \$s2 mod \$s3	Unsigned quotient and remainder
move from Hi	mfhi \$s1	\$s1 = Hi	Used to get copy of Hi
move from Lo	mflo \$s1	\$s2 = Lo	Used to get copy of Lo

Floating Point (a brief look)

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .00000001
 - very large numbers, e.g., 3.15576 \times 10^9
- Representation:
 - sign, exponent, significand: $(-1)^{sign} \times significand \times 2^{exponent}$
 - the floating point is *binary point*, no longer decimal!
 - more bits for significand gives more accuracy
 - more bits for exponent increases range
 - normalized: 1.xxxxxxxxx₂ * 2^{yyyy}
- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

- Leading "1" bit of significand is implicit
- Exponent is "biased" to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: $(-1)^{\text{sign}} \times (1 + \text{significand}) \times 2^{\text{exponent} \text{bias}}$
- Example:
 - decimal: $-.75 = -(\frac{1}{2} + \frac{1}{4})$
 - binary: $-.11 = -1.1 \times 2^{-1}$
 - floating point: exponent = 126 = 01111110

Floating point addition

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!

Floating-Point Multiplication

Example: 1.110*10¹⁰*9.200*10⁻⁵

- 1. (10+bias)+(-5+bias) bias = 5+bias
- 2. 1.110*9.200=10.212000 [*10⁵]
- 3. $1.0212^{*}10^{6}$
- 4. $1.021*10^{6}$
- 5. +1.021*10⁶

Floating-Point Instructions in MIPS

- 32 floating-point registers: \$f0,\$f1,...,\$f31
- The floating-point registers are used in pairs for double precision numbers
- Instructions:

Floating-Point	single	double
add	add.s	add.d
subtract	sub.s	sub.d
multiply	mul.s	mul.d
divide	div.s	div.d

Multiplexor

Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!

Lets build our ALU using a MUX:

Use of Multiplexor

FIGURE B.5.1 The 1-bit logical unit for AND and OR.

- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Dont want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction (a – b) ?

- Two's complement approach: just negate b and add.
- How do we negate?
- A very clever solution:

