Computer Arithmetic And ALU Design II

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications
Lecture 5, September 19, 2007

More Arithmetic Instructions

Instruction	Example	Meaning	Comments
multiply	mult \$s2,\$s3	Hi,Lo = \$s2*\$s3	64-bit signed product
multiply unsigned	multu \$s2,\$s3	Hi,Lo = \$s2*\$s3	64-bit unsigned product
divide	div \$s2,\$s3	$\begin{aligned} & \mathrm{Lo}=\$ \mathrm{~s} 2 / \$ \mathrm{~s} 3 \\ & \mathrm{Hi}=\$ \mathrm{~s} 2 \mathrm{mod} \$ \mathrm{~s} 3 \end{aligned}$	Lo = quotient, $\mathrm{Hi}=$ remainder
divide unsigned	divu \$s2,\$s3	$\begin{aligned} & \mathrm{Lo}=\$ \mathrm{~s} 2 / \$ \mathrm{~s} 3, \\ & \mathrm{Hi}=\$ \mathrm{~s} 2 \mathrm{mod} \$ \mathrm{~s} 3 \end{aligned}$	Unsigned quotient and remainder
move from Hi	mfhi \$s 1	\$s1 $=\mathrm{Hi}$	Used to get copy of Hi
move from Lo	mflo \$s 1	\$s2 = Lo	Used to get copy of Lo

Floating Point (a brief look)

- We need a way to represent
- numbers with fractions, e.g., 3.1416
- very small numbers, e.g., . 000000001
- very large numbers, e.g., 3.15576×10^{9}
- Representation:
- sign, exponent, significand: $(-1)^{\text {sign }} \times$ significand $\times 2^{\text {exponent }}$
- the floating point is binary point, no longer decimal!
- more bits for significand gives more accuracy
- more bits for exponent increases range
- normalized: 1.xxxxxxxxx ${ }^{*}{ }^{\text {2yyyy}}$
- IEEE 754 floating point standard:
- single precision: 8 bit exponent, 23 bit significand
- double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

- Leading " 1 " bit of significand is implicit
- Exponent is "biased" to make sorting easier
- all 0s is smallest exponent all 1 s is largest
- bias of 127 for single precision and 1023 for double precision
- summary: $(-1)^{\text {sign }} \times(1+$ significand $) \times 2^{\text {exponent }- \text { bias }}$
- Example:
- decimal: $-.75=-(1 / 2+1 / 4)$
- binary: $-.11=-1.1 \times 2^{-1}$
- floating point: exponent $=126=01111110$
- IEEE single precision:

Floating point addition

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
- IEEE 754 keeps two extra bits, guard and round
- four rounding modes
- positive divided by zero yields "infinity"
- zero divide by zero yields "not a number"
- other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
- see text for description of 80×86 and Pentium bug!

Floating-Point Multiplication

Example: $1.110^{*} 10^{10 *} 9.200^{*} 10^{-5}$

1. $(10+$ bias $)+(-5+$ bias $)-$ bias $=5+$ bias
2. $1.110 * 9.200=10.212000$
[*105]
3. $1.0212^{*} 10^{6}$
4. $1.021 * 10^{6}$
5. $+1.021^{*} 10^{6}$

Floating-Point Instructions in MIPS

- 32 floating-point registers: $\$ f 0, \$ f 1, \ldots, \$ f 31$
- The floating-point registers are used in pairs for double precision numbers
- Instructions:

Floating-Point	single	double
add	add.s	add.d
subtract	sub.s	sub.d
multiply	mul.s	mul.d
divide	div.s	div.d

Multiplexor

- Selects one of the inputs to be the output, based on a control input

> note: we call this a 2-input mux even though it has 3 inputs!

- Lets build our ALU using a MUX:

Use of Multiplexor

FIGURE B.5.1 The 1 -bit logical unit for AND and OR.

Different Implementations

- Not easy to decide the "best" way to build something
- Don't want too many inputs to a single gate
- Dont want to have to go through too many gates
- for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

$$
\begin{aligned}
& c_{\text {out }}=a b+a c_{\text {in }}+b c_{i n} \\
& \text { sum }=a \text { xor } b \text { xor } c_{i n}
\end{aligned}
$$

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction (a-b) ?

- Two's complement approach: just negate band add.
- How do we negate?
- A very clever solution:

