Computer Arithmetic And ALU Design I

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 4, September 17, 2007

How to represent a natural number?

Base of a number system: The number of digits used in the system. Example 1: Base 10 (*decimal*)

 $1760_{10} = 0*10^{0} + 6*10^{1} + 7*10^{2} + 1*10^{3}$

Numbers are written using positional notation.

Example 2: Base 2 (*binary*)

 $11101_2 = 1 * 2^0 + 0 * 2^1 + 1 * 2^2 + 1 * 2^3 + 1 * 2^4 = 29_{10}$

Addition and Subtraction in Binary

- $1 \quad 11 \quad \leftarrow carry \qquad \qquad 1 \quad \leftarrow carry$

Two's Complement Representation of Negative Numbers

Representing

Negative $(m) = 2^k - m$,

+00000011

where *k* is the number of bits used.

Example: *k*=8,

-125

3

╋

10000011 (256-125=131=1+2+128)

-122 10000110 "134"=Negative(122))

Overflow will occur if the result of addition exceeds 127: "128" (10000000) now serves as (-128)!

Shortcuts

- To negate a two's complement binary number, invert every 0 to 1 and every 1 to 0, then add 1 to the result
- 2. To convert a binary number represented in n bits to more than n bits, replicate the most significant bit (the sign bit) to fill the new bits on the left-hand side

More Data Transfer Instructions

Instruction	Example	Meaning	Comments
load half unsigned	lhu \$s1,100(\$s2)	\$s1 = Memory[\$s2+100]	Halfword memory to register
store half	sh \$s1,100(\$s2)	Memory[\$s2+100] = \$s1	Halfword register to memory
load byte unsigned	lbu \$s1,100(\$s2)	\$s1 = Memory[\$s2+100]	Byte from memory to register
store byte	sb \$s1,100(\$s2)	Memory[\$s2+100] = \$s1	Byte from register to memory
load upper immediate	lui \$s1,100	\$s1 = 100*2 ¹⁶	Loads constant in upper 16 bits

More Conditional Branch Instructions

Instruction	Example	Meaning	Comments
set less than unsigned	sltu \$s1,\$s2,\$s3	if(\$s2<\$s3) \$s1=1; else \$s1=0	Compare less than; unsigned numbers
set less than immediate unsigned	sltiu \$s1,\$s2,100	lf(\$s2<100) \$s1=1; else \$s1=0	Compare < constant; unsigned numbers

More Arithmetic Instructions

Instruction	Example	Meaning	Comments
add immediate	addi \$s1,\$s2,100	\$s1 = \$s2 + 100	+constant; overflow detected
add unsigned	addu \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	overflow undetected
subtract unsigned	subu \$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	overflow undetected
add immediate unsigned	addiu \$s1,\$s2,100	\$s1 = \$s2 + 100	+constant; overflow undetected
move from coprocessor register	mfc0 \$s1,\$eps	\$s1 = \$eps	Used to copy Exception PC plus other special registers

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A B
 - Can overflow occur if B is 0 ?
 - Can overflow occur if A is 0 ?

Effects of Overflow

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Don't always want to detect overflow

 new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!

NOT Gate

A triangle with an *inversion bubble*.

AND Gate

Boolean expression: $A = X \cdot Y$

OR Gate

Х

Υ

X OR Y

XOR Gate

Boolean Expression

Logic Diagram Symbol

 $X = A \oplus B$

Truth Table

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive OR.

NAND Gate

Boolean Expression Logic Diagram Symbol

Truth Table

$$X = (A \cdot B)'$$

в Α Х

NOR Gate

Boolean Expression Logic Diagram Symbol

Truth Table

$$X = (A + B)'$$

Three-Input AND Gate

Boolean Expression Logic Diagram Symbol

Truth Table

 $X = A \cdot B \cdot C$

Α	В	С	х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Combinatorial and Sequential Circuits: Definitions

A *combinatorial circuit* is a circuit whose output is solely determined by its input values.

A sequential circuit is a circuit whose output is a function of input values **and** the current state of the circuit.

Half Adder

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Problem with the Half Adder: No Carry-In

Full Adder

A	В	Carry- in	Sum	Carry- out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on a gradeschool algorithm

 $\begin{array}{c} 0010 \quad (multiplicand) \\ \underline{x \ 1011} \quad (multiplier) \end{array}$

• Negative numbers: convert and multiply

- there are better techniques, we won't look at them

Multiplication: Implementation

Final Version: Fast Multiplication

