Computer Arithmetic And
ALU Design |

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 4, September 17, 2007



How to represent a natural number?

Base of a number system: The number of digits
used in the system. Example 1: Base 10
(decimal)

1760,, = 0*10° + 6*10" +7*10% +1*10°
Numbers are written using positional notation.

Example 2: Base 2 (binary)
11101, =1*2° +0* 2" +1%22 +1*2° +1*2% =29, ,



Addition and Subtraction in Binary

10011 N 1+2+16 = 19
11001 @ — 1+8+16 = ' 25
101100 — 4+8+32 = 44

11 <«borrow
10101 1+4+16 = 21
- 1011 1+2+8 = 11

1010 2+8 = 10



Two’s Complement Representation
of Negative Numbers

* Representing
Negative(m) =2 —m,

where Kk is the number of bits used.
Example: k=8,
-125 10000011 (256-125=131=1+2+128)
* 3 "00000011
-122 10000110 “134”=Negative(122))

Overflow will occur If the result of addition exceeds
127: 128" (10000000) now serves as (-128)!




Shortcuts

1. To negate a two's complement binary
number, invert every O to 1 and every 1 to
0, then add 1 to the result

2. To convert a binary number represented
IN n bits to more than n bits, replicate the
most significant bit (the sign bit) to fill the
new bits on the left-hand side



More Data Transfer Instructions

load half lhu $s1,100($s2) $s1 = Memory[$s2+100] Halfword memory

unsigned to register

store half sh $s1,100($s2) Memory[$s2+100] = $s1 Halfword register to
memory

load byte lbu $51,100($s2) $s1 = Memory[$s2+100] Byte from memory

unsigned to register

store byte  sb $s1,100($s2) Memory[$s2+100] = $s1 Byte from register
to memory

load upper lui $s1,100 $s1 = 100*216 Loads constant in

immediate upper 16 bits



More Conditional Branch
Instructions

Instruction

set less than
unsigned

set less than
immediate
unsigned

Example

sltu $s1,$s2,$s3

sltiu $s1,%$s2,100

Meaning

if($s2<$s3) $s1=1;
else $s1=0

If($s2<100) $s1=1;
else $s1=0

Comments

Compare less
than; unsigned
numbers

Compare <
constant;
unsigned numbers



More Arithmetic Instructions

add immediate addi $s1,$s2,100 $s1 =$s2 + 100 +constant; overflow
detected

add unsigned  addu $s1,$s2,$s3 $s1l =$s2 + $s3  overflow
undetected

subtract subu $s1,$s2,$s3 $s1 =$s2 - $s3  overflow

unsigned undetected

add immediate addiu $s1,%$s2,100 $s1 =$s2 + 100 +constant; overflow

unsigned undetected

move from mfcO $s1,$eps $sl = $eps Used to copy

coprocessor Exception PC plus

register other special

registers



Detecting Overflow

No overflow when adding a positive and a negative
number

No overflow when signs are the same for subtraction
Overflow occurs when the value affects the sign:

— overflow when adding two positives yields a negative
— or, adding two negatives gives a positive

— or, subtract a negative from a positive and get a
negative

— or, subtract a positive from a negative and get a
positive

Consider the operations A+ B,and A—B

— Can overflow occurif Bis 0 ?

— Can overflow occur if Ais 0 ?



Effects of Overflow

* An exception (interrupt) occurs
— Control jumps to predefined address for exception
— Interrupted address is saved for possible resumption

« Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!



NOT Gate
x— >o——nNorx A triangle with an

Inversion bubble.

X NOT X

0 1
1 0




- = O o>

AND Gate

Boolean expression:
A=XY



OR Gate

Y

X ORY Boolean expression: A= X +Y

x Y
0 0 0
o 1
1 0
1 1

1
1
1




Boolean Expression

X =A®B

Exclusive OR.

XOR Gate

Logic Diagram Symbol Truth Table
A X A B X
) >— 0 0 0
B 0 1 1
1 0 1
1 1 0




Boolean Expression

X

(A -

B)

NAND Gate

Logic Diagram Symbol

A

B

B

Truth Table
A B X
0 0 1
0 1 1
1 0 1
1 1 0




Boolean Expression

X = (A+ B)'

NOR Gate

Logic Diagram Symbol Truth Table
A A B X
—) 2 o | o [
B 0 1 0
1 0 0
1 1 0




Three-Input AND Gate

Boolean Expression Logic Diagram Symbol Truth Table
A A B C X
X=A B - C B__D X 0 0 0 0
C 0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1




Combinatorial and Sequential
Circuits: Definitions

A combinatorial circuit Is a circuit whose output is
solely determined by its input values.

A sequential circuit is a circuit whose output is a
function of input values and the current state of the
circuit.



Half Adder

A

w A B Sum | Carry
B 0 0 0 0
0 1 1 0
}—cany 1 0 1 0
1 1 0 1

Problem with the Half Adder: No Carry-In



Full Adder

Carry-in

B
slips
Carry-out

— y

-/

. ~ |carry-| . | Carry-
Al o | O
0] 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0] 0 1 0
1 0] 1 0 1
1 1 0 0 1
1 1 1 1 1




Multiplication

More complicated than addition
— accomplished via shifting and addition
More time and more area

Let's look at 3 versions based on a gradeschool
algorithm

0010  (multiplicand)
x 1011  (multiplier)

Negative numbers: convert and multiply
— there are better techniques, we won't look at them



Multiplication: Implementation

Multiplier0 = 1 1. Test

Multiplier0

Multiplier0 = 0

Y

la. Add multiplicand to product and
Multiplicand place the result in Product register
Shift left |
64 bits
y \/ B —
\/ Multiplier Y Y
64-bit ALU Shift right 2. Shift the Multiplicand register left 1 bit
32 bits
/ Y
Product ) Control test 3. Shift the Multiplier register right 1 bit
Write 1
64 bits

No: < 32 repetitions

Data.p ath Yes: 32 repetitions

Control



/

Improved Versmgj

*Multiplier starts in right half of product

Multiplicand

32 bits

\/

A

Product0 =1

1. Test Product0 =0

Product0

tALU

y

—_—

Product

64 bits

Shift right
Write

Add multiplicand to
The left-hand half of Product
(need a 65" bit for overflow)

L

3. Shift the Product register right 1 bit

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions



Final Version: Fast Multiplication

Mplier1 - Mcand  Mpler « Mcand

mm-k




