
Computer Arithmetic And

ALU Design I

Fall 2007

CS 502: Computers and Communications

Lecture 4, September 17, 2007

Instructor: Dmitri A. Gusev

How to represent a natural number?

Base of a number system: The number of digits

used in the system. Example 1: Base 10

(decimal)

3210

10 10*110*710*610*01760 

Numbers are written using positional notation.

Example 2: Base 2 (binary)

10

43210

2 292*12*12*12*02*111101 

Addition and Subtraction in Binary

1 11 ←carry 1 ←carry

10011 → 1+2+16 = 19
+
11001 → 1+8+16 =

+
25

101100 → 4+8+32 = 44

1 1 ←borrow

10101 1+4+16 = 21
-

1011 1+2+ 8 =
-

11

1010 2+8 = 10

Two’s Complement Representation

of Negative Numbers

• Representing

where k is the number of bits used.

Example: k=8,

-125 10000011 (256-125=131=1+2+128)
+

3
+
00000011

-122 10000110 ―134‖=Negative(122))

Overflow will occur if the result of addition exceeds
127: ―128‖ (10000000) now serves as (-128)!

,2)(Negative mm k 

Shortcuts

1. To negate a two’s complement binary

number, invert every 0 to 1 and every 1 to

0, then add 1 to the result

2. To convert a binary number represented

in n bits to more than n bits, replicate the

most significant bit (the sign bit) to fill the

new bits on the left-hand side

More Data Transfer Instructions

Instruction Example Meaning Comments

load half

unsigned

lhu $s1,100($s2) $s1 = Memory[$s2+100] Halfword memory

to register

store half sh $s1,100($s2) Memory[$s2+100] = $s1 Halfword register to

memory

load byte

unsigned

lbu $s1,100($s2) $s1 = Memory[$s2+100] Byte from memory

to register

store byte sb $s1,100($s2) Memory[$s2+100] = $s1 Byte from register

to memory

load upper

immediate

lui $s1,100 $s1 = 100*216 Loads constant in

upper 16 bits

More Conditional Branch

Instructions

Instruction Example Meaning Comments

set less than

unsigned

sltu $s1,$s2,$s3 if($s2<$s3) $s1=1;

else $s1=0

Compare less

than; unsigned

numbers

set less than

immediate

unsigned

sltiu $s1,$s2,100 If($s2<100) $s1=1;

else $s1=0

Compare <

constant;

unsigned numbers

More Arithmetic Instructions

Instruction Example Meaning Comments

add immediate addi $s1,$s2,100 $s1 = $s2 + 100 +constant; overflow

detected

add unsigned addu $s1,$s2,$s3 $s1 = $s2 + $s3 overflow

undetected

subtract

unsigned

subu $s1,$s2,$s3 $s1 = $s2 - $s3 overflow

undetected

add immediate

unsigned

addiu $s1,$s2,100 $s1 = $s2 + 100 +constant; overflow

undetected

move from

coprocessor

register

mfc0 $s1,$eps $s1 = $eps Used to copy

Exception PC plus

other special

registers

• No overflow when adding a positive and a negative

number

• No overflow when signs are the same for subtraction

• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative

– or, adding two negatives gives a positive

– or, subtract a negative from a positive and get a

negative

– or, subtract a positive from a negative and get a

positive

• Consider the operations A + B, and A – B

– Can overflow occur if B is 0 ?

– Can overflow occur if A is 0 ?

Detecting Overflow

• An exception (interrupt) occurs

– Control jumps to predefined address for exception

– Interrupted address is saved for possible resumption

• Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!

Effects of Overflow

NOT Gate

A triangle with an

inversion bubble.

AND Gate

Boolean expression:

A = X·Y

OR Gate

Boolean expression: A = X + Y

XOR Gate

Exclusive OR.

NAND Gate

NOR Gate

Three-Input AND Gate

Combinatorial and Sequential

Circuits: Definitions

A combinatorial circuit is a circuit whose output is

solely determined by its input values.

A sequential circuit is a circuit whose output is a

function of input values and the current state of the

circuit.

Half Adder

Problem with the Half Adder: No Carry-In

Full Adder

• More complicated than addition

– accomplished via shifting and addition

• More time and more area

• Let's look at 3 versions based on a gradeschool

algorithm

0010 (multiplicand)

__x_1011 (multiplier)

• Negative numbers: convert and multiply

– there are better techniques, we won’t look at them

Multiplication

Multiplication: Implementation

Datapath

Control

Multiplicand

Shift left

64 bits

64-bit ALU

Product

Write

64 bits

Control test

Multiplier

Shift right

32 bits

32nd repetition?

1a. Add multiplicand to product and

place the result in Product register

Multiplier0 = 01. Test

Multiplier0

Start

Multiplier0 = 1

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

No: < 32 repetitions

Yes: 32 repetitions

Done

Improved Version

Multiplicand

32 bits

32-bit ALU

Product
Write

64 bits

Control

test

Shift right

32nd repetition?

Product0 = 01. Test

Product0

Start

Product0 = 1

3. Shift the Product register right 1 bit

No: < 32 repetitions

Yes: 32 repetitions

Done

Add multiplicand to

The left-hand half of Product

(need a 65th bit for overflow)

•Multiplier starts in right half of product

Final Version: Fast Multiplication

