Instruction Set Architecture Il

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 3, September 12, 2007

Overview of MIPS

simple instructions all 32 bits wide
very structured, no unnecessary baggage
only three instruction formats

R op rs rt rd shamt| funct
I op rs rt 16 bit address
J op 26 bit address

rely on compiler to achieve performance
— what are the compiler's goals?

help compiler where we can

Cconstants

Small constants are used quite frequently (50% of operands)
e.g., A=A+5;
B=B+1,;
C=C-18;
Solutions? Why not?
— put 'typical constants' in memory and load them.

— create hard-wired registers (like $zero) for constants like one.

MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

Design Principle: Make the common case fast.

How about larger constants?

« We'd like to be able to load a 32 bit constant into a register
« Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

1010101010101010 0000000000000000

« Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

filled with zeros

1010101010101010 0000000000000000

0000000000000000 1010101010101010
ori

1010101010101010 1010101010101010

PC-Relative Addressing

« PC-relative addressing Is an addressing
regime in which the address is the sum of
the program counter (PC) and a constant
In the Instruction

Addresses in Branches and
Jumps

* |Instructions:

bne $t4,S$t5,Label Next instruction is at Label if $t4 ° $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label
« Formats:
I op rs rt 16 bit address
J op 26 bit address

 Addresses are not 32 bits
— How do we handle this with load and store instructions?

Addresses In Branches

Instructions:

bne S$t4,S$t5,Label
beqg $t4,$t5, Label

Formats:

Next instruction is at Label if $t4+$t5
Next instruction is at Label if $t4=%t5

I

op

rs

rt

16 bit address

Could specify a register (like lw and sw) and add it to address
— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

Jump instructions just use high order bits of PC
— address boundaries of 256 MB

1. Immediate addressing

| op I rs I rt | Immediate
2. Register addressing
| op | rs | rt | rd | | functl Registers
I Register
3. Base addressing
| op | s | rt | Address | Memory
I
| Register | é—» | Halfword | Word
[1
4. PC-relative addressing
| op | s | rt | Address | Memory
| PC | q-D— Word
[
5. Pseudodirect addressing
| op | Address | Memory
|
| PC | Cb— Word

1978:
1980:
1982:
1985:

A - 32

The Intel 8086 is announced (16 bit architecture)

The 8087 floating point coprocessor is added

The 80286 increases address space to 24 bits, +instructions
The 80386 extends to 32 bits, new addressing modes

1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

1997:
1999:
2001:
2003:

2004:

(mostly designed for higher performance)

57 new “MMX” instructions are added, Pentium Il

The Pentium Ill added another 70 instructions (SSE)

Another 144 instructions (SSE2)

AMD extends the architecture to increase address space to 64 bits,

widens all registers to 64 bits and other changes (AMD64)

Intel capitulates and embraces AMD64 (calls it EM64T) and adds

more media extensions

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that 1s difficult to explain and impossible to love”

|A-32 Overview

« Complexity:
— Instructions from 1 to 17 bytes long
— one operand must act as both a source and destination
— one operand can come from memory

— complex addressing modes
e.g., "base or scaled index with 8 or 32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

|A-32 Registers and Data
Addressing

* Registers in the 32-bit subset that originated with 80386

Name Use
31 0
EAX GPRO
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6
EDI GPR7
CS Code segment pointer
SS Stack segment pointer (top of stack)
DS Data segment pointer 0
ES Data segment pointer 1
FS Data segment pointer 2
GS Data segment pointer 3
EIP Instruction pointer (PC)
EFLAGS Condition codes

|A-32 Register Restrictions

Registers are not “general purpose” — note the restrictions below

Register
Deseription restrictions

Reglster Indiract Addrass 15 In 3 reglstar, not ESP or EBP 1w $s0,004s1)
Basad moda with 8-or 3201t Address |2 contants of base raglstar plus not ESP of EBP Tw b0, 10004s1#<16-bit
displacemant displacameant, #displacement
Basa plus scaled Index The address 15 Base: any GPR | mul $t0,4s52.4
Base + (2598 ¢ |nglex) Index: rat ESP | add i, 410,451
where Scale has thevalue 0, 1, 2, or 3, [} 40,004t
Basa plus scaled Index with Tha addrass |5 Base: any GPR | mul dt0,4s2.4
8- or 32-it displacemsnt Base + (2559 ¥ Index) + displacement Indesx: mot ESP | add $t0, 410,451
where Scale has thevalue 0, 1, 2, or 3. I 450, 10004L0) #<16-bit
#displacement

AGURE 2.42 1A-32 32:bit addressing modes with register restrictions and the equivalemt MIPS code. The Base plus Scaled Index
addressing mede, not found in MIPS or the PowerPC, 15 included to avoid the multiplies by four (scale factor of 2) to turn an mdex in a register mto a
biyte address (see Figures 2.34 and 2.36). A scale factor of 1 is used for 16-bit data, and a scale factor of 2 for 64-bit data. Scale factor of O means the
address is not scaled. If the displacement 15 longer than 16 bits in the second or fourth medes, then the MIPS aquivalent mode would need two more
mstructions:a 107 to load the upper 16 bits of the displacement and an add to sum the upper address with the base register 45 1. (Intel gives two dif-
ferent names to what 15 called Based addressing mode—Based and Indexed—but they are essentially identical and we combine them here.)

|A-32 Typical Instructions

Four major types of integer instructions:
— Data movement including move, push, pop
— Arithmetic and logical (destination register or memory)
— Control flow (use of condition codes / flags)
— String instructions, including string move and string compare

JE name if equalicondition codey [EIP=name];
EIF-122 < name < EIP+122
JHP name EIF=name
Call name SP=5P-4;: M[5F]=EIP+5;: EIP=name ;
MOWVW EEX . [EDI+45] ERX=M[EDI+45]
PUSH ESI SP=5P-4; M[SP]=E5I
POP EDI ECI=M[5FP];: SP=5FP+4
ADD EAYX,.#GTOE Eal=EAX+ETER
TEST EDX,#47 Set conditlon code (Mags) with EDX and 42
MOW 5L MLEDI J=MLESI]:
ECI=ED0I+4: ESI=ESI+4

FIGURE 243 Some typical 1A-32 instructions and their functions. A list of frequent aperations
appears in Figure 2.44. The CALL saves the EIF of the next instruction on the stack. {EIF is the Intel FiZ)

|A-32 Instruction

Typical formats: (notice the different lengths)

a. JE EIP + displacement

Formats

4 4 8
JE Condi- Displacement
tion
b. CALL
8 32
CALL Offset

c.MOV EBX, [EDI + 45]

6 11 8 8
r/m .
MOV |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH |Reg
e. ADD EAX, #6765
4 3 1 32
ADD (Reg|w Immediate
f. TEST EDX, #42
7 1 8 32
TEST w Postbyte Immediate

Summary

* |Instruction complexity is only one variable

— lower instruction count vs. higher CPI / lower
clock rate

* Design Principles:
— simplicity favors regularity
— smaller Is faster
— good design demands compromise
— make the common case fast
* Instruction set architecture
— a very important abstraction indeed!

