
Instruction Set Architecture II

Fall 2007

CS 502: Computers and Communications

Lecture 3, September 12, 2007

Instructor: Dmitri A. Gusev

• simple instructions all 32 bits wide

• very structured, no unnecessary baggage

• only three instruction formats

• rely on compiler to achieve performance

— what are the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

Overview of MIPS

• Small constants are used quite frequently (50% of operands)

e.g., A = A + 5;

B = B + 1;

C = C - 18;

• Solutions? Why not?

– put 'typical constants' in memory and load them.

– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4

slti $8, $18, 10

andi $29, $29, 6

ori $29, $29, 4

• Design Principle: Make the common case fast.

Constants

• We'd like to be able to load a 32 bit constant into a register

• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

PC-Relative Addressing

• PC-relative addressing is an addressing

regime in which the address is the sum of

the program counter (PC) and a constant

in the instruction

• Instructions:

bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5

beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5

j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits

— How do we handle this with load and store instructions?

op rs rt 16 bit address

op 26 bit address

I

J

Addresses in Branches and

Jumps

• Instructions:

bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5

beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address

– use Instruction Address Register (PC = program counter)

– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC

– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

IA - 32
• 1978: The Intel 8086 is announced (16 bit architecture)

• 1980: The 8087 floating point coprocessor is added

• 1982: The 80286 increases address space to 24 bits, +instructions

• 1985: The 80386 extends to 32 bits, new addressing modes

• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher performance)

• 1997: 57 new ―MMX‖ instructions are added, Pentium II

• 1999: The Pentium III added another 70 instructions (SSE)

• 2001: Another 144 instructions (SSE2)

• 2003: AMD extends the architecture to increase address space to 64 bits,
widens all registers to 64 bits and other changes (AMD64)

• 2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds
more media extensions

• “This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

IA-32 Overview

• Complexity:

– Instructions from 1 to 17 bytes long

– one operand must act as both a source and destination

– one operand can come from memory

– complex addressing modes

e.g., ―base or scaled index with 8 or 32 bit displacement‖

• Saving grace:

– the most frequently used instructions are not too difficult to build

– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,

making it beautiful from the right perspective”

IA-32 Registers and Data

Addressing
• Registers in the 32-bit subset that originated with 80386

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use

031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

IA-32 Register Restrictions

• Registers are not ―general purpose‖ – note the restrictions below

IA-32 Typical Instructions
• Four major types of integer instructions:

– Data movement including move, push, pop

– Arithmetic and logical (destination register or memory)

– Control flow (use of condition codes / flags)

– String instructions, including string move and string compare

IA-32 instruction Formats
• Typical formats: (notice the different lengths)

a. JE EIP + displacement

b. CALL

c. MOV EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacement
r/m

Postbyte

Offset

Displacement
Condi-

tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8

• Instruction complexity is only one variable

– lower instruction count vs. higher CPI / lower

clock rate

• Design Principles:

– simplicity favors regularity

– smaller is faster

– good design demands compromise

– make the common case fast

• Instruction set architecture

– a very important abstraction indeed!

Summary

