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• simple instructions all 32 bits wide

• very structured, no unnecessary baggage

• only three  instruction formats

• rely on compiler to achieve performance

— what are  the compiler's goals?

• help compiler where we can
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Overview of MIPS



• Small constants are used quite frequently (50% of operands) 

e.g., A = A + 5;

B = B + 1;

C = C - 18;

• Solutions?  Why not?

– put 'typical constants' in memory and load them.  

– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4

slti $8, $18, 10

andi $29, $29, 6

ori $29, $29, 4

• Design Principle:  Make the common case fast.    

Constants



• We'd like to be able to load a 32 bit constant into a register

• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?



PC-Relative Addressing

• PC-relative addressing is an addressing 

regime in which the address is the sum of 

the program counter (PC) and a constant 

in the instruction



• Instructions:

bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5

beq $t4,$t5,Label Next instruction is at Label if  $t4 = $t5

j Label Next instruction is at Label 

• Formats:

• Addresses are not 32 bits 

— How do we handle this with load and store instructions?
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Addresses in Branches and 

Jumps



• Instructions:

bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5

beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address

– use Instruction Address Register (PC = program counter)

– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC 

– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches
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1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing
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IA - 32
• 1978:  The Intel 8086 is announced (16 bit architecture)

• 1980:  The 8087 floating point coprocessor is added

• 1982:  The 80286 increases address space to 24 bits, +instructions

• 1985:  The 80386 extends to 32 bits, new addressing modes

• 1989-1995:  The 80486, Pentium, Pentium Pro add a few  instructions
(mostly designed for higher performance)

• 1997:  57 new ―MMX‖ instructions are added, Pentium II

• 1999:  The Pentium III added another 70 instructions (SSE)

• 2001:  Another 144 instructions (SSE2)

• 2003:  AMD extends the architecture to increase address space to 64 bits,
widens all registers to 64 bits and other changes (AMD64)

• 2004:  Intel capitulates and embraces AMD64 (calls it EM64T) and adds
more media extensions

• “This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love” 



IA-32 Overview

• Complexity:

– Instructions from 1 to 17 bytes long

– one operand must act as both a source and destination

– one operand can come from memory

– complex addressing modes

e.g., ―base or scaled index with 8 or 32 bit displacement‖

• Saving grace:

– the most frequently used instructions are not too difficult to build

– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity, 

making it beautiful from the right perspective”



IA-32 Registers and Data 

Addressing
• Registers in the 32-bit subset that originated with 80386

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use

031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS



IA-32 Register Restrictions

• Registers are not ―general purpose‖ – note the restrictions below



IA-32 Typical Instructions
• Four major types of integer instructions:

– Data movement including move, push, pop

– Arithmetic and logical (destination register or memory)

– Control flow (use of condition codes / flags )

– String instructions, including string move and string compare



IA-32 instruction Formats
• Typical formats:  (notice the different lengths)

a. JE EIP + displacement

b. CALL

c. MOV      EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacement
r/m

Postbyte

Offset

Displacement
Condi-

tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8



• Instruction complexity is only one variable

– lower instruction count vs. higher CPI / lower 

clock rate

• Design Principles:

– simplicity favors regularity

– smaller is faster

– good design demands compromise

– make the common case fast

• Instruction set architecture

– a very important abstraction indeed!

Summary


