Instruction Set Architecture |

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications

Lecture 2, September 10, 2007

SPIM MIPS Simulator

« Download the SPIM simulator from
http://pages.cs.wisc.edu/~larus/spim.html

« spim implements almost the entire MIPS32 assembler-extended
Instruction set. (It omits most floating point comparisons and
rounding modes and the memory system page tables.) MIPS
compilers also generate a number of assembler directives that spim
cannot process. These directives usually can be safely deleted.

« Sample programs:
https://www.cs.tcd.ie/John.Waldron/itral/source/source.html

http://pages.cs.wisc.edu/~larus/spim.html
https://www.cs.tcd.ie/John.Waldron/itral/source/source.html

What 1s “Computer Architecture”

Computer Architecture =
Instruction Set Architecture +

Machine Organization

Where The Instruction Set Belongs

software]L\/ /L
/

ey L T L e L T Tt T

e mstructlon set """"

S

hardware

Development: Down & Up From The
Instruction Set Architecture

Application

Operating
System

Compiler| | Firmware _
w — , - ———— Instruction Set

Architecture

Instr. Set Proc. | 1/O system

Datapath & Control

Digital Design
C_ll’_C.LI.LLD_ESJ.gn

Lavout
it el

Instructions:

« Language of the Machine
+ We'll be working with the MIPS instruction set architecture
— similar to other architectures developed since the 1980's
— Almost 100 million MIPS processors manufactured in 2002

— used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, ...

Millions of processors

1400 A
1300
1200
1100 H
1000
900
800
700
600
500 -
400
300
200
100

0 -

[other

M SsPARC

M Hitachi SH
B PowerPC

[] Motorola 68K
M miPs

[1A-32

B ARM

I W
___Hiln
. f

_ N

0

T
1998 1999 2000 2001 2002

PC pr

Address

Instruction™—
memory

Instruction

MIPS machine

Data

Register #
Registers
Register #

Register #

Address

DataC

memory

Data

PC = Program Counter; ALU = Arithmetic & Logic Unit

Stored Program Concept

* |nstructions are bits

 Programs are stored in memory
— to be read or written just like data

memory for data, programs,

/ compilers, editors, etc.
Processor Memory

Fetch & Execute Cycle:

— Instructions are fetched and put into a special register
— Bits in the register "control" the subsequent actions

— Fetch the “next” instruction and continue

MIPS Arithmetic

All arithmetic instructions have three operands
Operand order is fixed (destination first)

Arithmetic instructions’ operands must be
registers

Only 32 registers provided
Each register contains 32 bits (1 word)

230 memory words are available... but they are
accessed only by data transfer instructions In
MIPS! MIPS uses byte addresses, so sequential
word addresses differ by 4

Sample Registers

e $s0, $s1, ..., $s7
o $tO, $t1, ..., $t7
e $zero

Registers $s0 - $s7 map to 16-23 and $tO -
$t7 map to 8-15. MIPS register $zero
always equals 0.

Memory Organization

Bytes are nice, but most data items use larger "words"

For MIPS, a word is 32 bits or 4 bytes.
O | 32 bits of datg

4 | 32 bits of date

Registers hold 32 bits of data
8 | 32bits of datg

12 | 32 bits of datsg

232 bytes with byte addresses from 0 to 232-1
230 words with byte addresses 0, 4, 8, ... 2324

Words are aligned
l.e., what are the least 2 significant bits of a word address?

Some Arithmetic Instructions

add $s1,$s2,$s3 $sl = $s2 + $s3 3 operands; data in registers
subtract sub $s2,$s3,$s7 $s2 = $s3 - $s7 3 operands; data in registers

Some Data Transfer Instructions

load word Iw $s1,100($s2) $s1 = Memory[$s2+100] Data from memory
to register

store word sw $s3,100($s2) Memory[$s2+100] = $s3 Data from register
to memory

Example

C code: A[12] = h + A[8];

MIPS code: lw $St0, 32 (Ss3)
add $t0, $s2, S$tO0
sw $t0, 48 ($s3)

« Can refer to registers by name (e.g., $s2, $t2) instead of number
« Store word has destination last
« Remember: Arithmetic operands are registers, not memory!

Can’t write: add 48($s3), S$s2, 32($s3)

Logical Instructions

and $s1,$s2,$s3 $s1 = $s2 & $s3 3 reg. operands;

bit-by-bit AND
or or $s4,$s2,$s6 $s4 = $s2 | $s6 3 reg. operands;

bit-by-bit OR
nor nor $s2,$s5,$s6 $s2 = ~ ($s5 | $s6) 3 reg. operands;

bit-by-bit NOR

and immediate andi $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND reg
with constant

or immediate ori $s2,$s1,100 $s2 =$s1 | 100 Bit-by-bit OR reg
with constant

shift left logical sl $s3,$s4,10 $s3 = $s4 << 10 Shift left by constant

shift right logical srl $s1,$s7,5 $s1 =3$s7 >>5 Shift right by
constant

MIPS Fields

R-type (for “register”):

op ___rs It rd_____Ishamt__lfunct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
opcode 1stregister 2" register Register Shift Function
(“operation source source destination amount

code”) operand operand operand

I-type (for “immediate”):

op ___Irs It constantor address

6 bits 5 bits 5 bits 16 bits

Some Conditional Branch Instructions

branch on equal beq $s1,$s2,L if($s1l == $s2) gotoL; Equal test and

else fall through branch
branchon not bne $s3,$s2,L if($s3 '=$s2) goto L; Not equal test and
equal else fall through branch
set on less than slt $s1,$s2,$s3 if($s2<$s3) $s1=1; Used with beq,
else $s1=0 bne
set on less than slti $s1,$s2,100 if($52<100) $s1=1; Used with beq,
immediate else $s1=0 bne

An Unconditional Jump Instruction

jump gotoL jump to target
address

Note: In the tables above, L stands for “Label”

Example

if (1i!'=7) beqg $s4, S$sb5, Labl
h=1i+7; add $s3, $s4, S$Ssb5
else 7 Lab?2
h=1i-7; Labl:sub S$s3, Ss4, Ss5
Lab2:...

« Can you build a simple for loop?

Policy of Use Conventions

Name |Register number Usage
Szero 0 the constant value 0
Sv0-$vl 2-3 values for results and expression evaluation
$al0-$a3 4-7 arguments
St0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-5t9 24-25 more temporaries
S$gp 28 global pointer
$sp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

SPIM: 1/O via System Calls
(Section A.9)

.data
str: .asciiz "You typed the number ="
dext
main: i $v0, 5 # system call code for read_int
syscall # read the integer input
i $s1,0 # load zero to $s1
add $s1, $s1, $v0 # copy the input
[$v0, 4 # system call for print_str
la $a0, str # load address of string to print
syscall # print the string
[$v0, 1 # system call for print_int
i $a0, 0 # load zero to $a0
add $a0, $a0, $s1 # set $a0 to the integer to print
syscall # print the integer

jr $ra

