
Instruction Set Architecture I

Fall 2007

CS 502: Computers and Communications

Lecture 2, September 10, 2007

Instructor: Dmitri A. Gusev

SPIM MIPS Simulator
• Download the SPIM simulator from

http://pages.cs.wisc.edu/~larus/spim.html

• spim implements almost the entire MIPS32 assembler-extended

instruction set. (It omits most floating point comparisons and

rounding modes and the memory system page tables.) MIPS

compilers also generate a number of assembler directives that spim

cannot process. These directives usually can be safely deleted.

• Sample programs:

https://www.cs.tcd.ie/John.Waldron/itral/source/source.html

http://pages.cs.wisc.edu/~larus/spim.html
https://www.cs.tcd.ie/John.Waldron/itral/source/source.html

Where The Instruction Set Belongs

Development: Down & Up From The

Instruction Set Architecture

Instructions:
• Language of the Machine

• We’ll be working with the MIPS instruction set architecture

– similar to other architectures developed since the 1980's

– Almost 100 million MIPS processors manufactured in 2002

– used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, …
1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1998 2000 2001 20021999

Other

SPARC

Hitachi SH

PowerPC

Motorola 68K

MIPS

IA-32

ARM

PC = Program Counter; ALU = Arithmetic & Logic Unit

• Instructions are bits

• Programs are stored in memory

— to be read or written just like data

Fetch & Execute Cycle:

– Instructions are fetched and put into a special register

– Bits in the register "control" the subsequent actions

– Fetch the ―next‖ instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

MIPS Arithmetic

• All arithmetic instructions have three operands

• Operand order is fixed (destination first)

• Arithmetic instructions’ operands must be

registers

• Only 32 registers provided

• Each register contains 32 bits (1 word)

• 230 memory words are available… but they are

accessed only by data transfer instructions in

MIPS! MIPS uses byte addresses, so sequential

word addresses differ by 4

Sample Registers

• $s0, $s1, …, $s7

• $t0, $t1, …, $t7

• $zero

Registers $s0 - $s7 map to 16-23 and $t0 -

$t7 map to 8-15. MIPS register $zero

always equals 0.

Memory Organization

• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1

• 230 words with byte addresses 0, 4, 8, ... 232-4

• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

Some Arithmetic Instructions

Instruction Example Meaning Comments

add add $s1,$s2,$s3 $s1 = $s2 + $s3 3 operands; data in registers

subtract sub $s2,$s3,$s7 $s2 = $s3 - $s7 3 operands; data in registers

Some Data Transfer Instructions

Instruction Example Meaning Comments

load word lw $s1,100($s2) $s1 = Memory[$s2+100] Data from memory

to register

store word sw $s3,100($s2) Memory[$s2+100] = $s3 Data from register

to memory

Example

C code: A[12] = h + A[8];

MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0

sw $t0, 48($s3)

• Can refer to registers by name (e.g., $s2, $t2) instead of number

• Store word has destination last

• Remember: Arithmetic operands are registers, not memory!

Can’t write: add 48($s3), $s2, 32($s3)

Logical Instructions

Instruction Example Meaning Comments

and and $s1,$s2,$s3 $s1 = $s2 & $s3 3 reg. operands;

bit-by-bit AND

or or $s4,$s2,$s6 $s4 = $s2 | $s6 3 reg. operands;

bit-by-bit OR

nor nor $s2,$s5,$s6 $s2 = ~ ($s5 | $s6) 3 reg. operands;

bit-by-bit NOR

and immediate andi $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND reg

with constant

or immediate ori $s2,$s1,100 $s2 = $s1 | 100 Bit-by-bit OR reg

with constant

shift left logical sll $s3,$s4,10 $s3 = $s4 << 10 Shift left by constant

shift right logical srl $s1,$s7,5 $s1 = $s7 >> 5 Shift right by

constant

MIPS Fields

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

opcode

(―operation

code‖)

1st register

source

operand

2nd register

source

operand

Register

destination

operand

Shift

amount

Function

R-type (for ―register‖):

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

I-type (for ―immediate‖):

Some Conditional Branch Instructions

Instruction Example Meaning Comments

branch on equal beq $s1,$s2,L if($s1 == $s2) go to L;

else fall through

Equal test and

branch

branch on not

equal

bne $s3,$s2,L if($s3 != $s2) go to L;

else fall through

Not equal test and

branch

set on less than slt $s1,$s2,$s3 if($s2<$s3) $s1=1;

else $s1=0

Used with beq,

bne

set on less than

immediate

slti $s1,$s2,100 if($s2<100) $s1=1;

else $s1=0

Used with beq,

bne

An Unconditional Jump Instruction

Instruction Example Meaning Comments

jump j L go to L jump to target

address

Note: In the tables above, L stands for ―Label‖

if (i!=j) beq $s4, $s5, Lab1

h=i+j; add $s3, $s4, $s5

else j Lab2

h=i-j; Lab1:sub $s3, $s4, $s5

Lab2:...

• Can you build a simple for loop?

Example

Policy of Use Conventions
Name Register number Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

SPIM: I/O via System Calls

(Section A.9)
.data

str: .asciiz "You typed the number = "

.text

main: li $v0, 5 # system call code for read_int

syscall # read the integer input

li $s1, 0 # load zero to $s1

add $s1, $s1, $v0 # copy the input

li $v0, 4 # system call for print_str

la $a0, str # load address of string to print

syscall # print the string

li $v0, 1 # system call for print_int

li $a0, 0 # load zero to $a0

add $a0, $a0, $s1 # set $a0 to the integer to print

syscall # print the integer

jr $ra

