
Database Management

Concepts II

Fall 2007

CS 502: Computers and Communications Technology

Lecture 22, November 26, 2007

Instructor: Dmitri A. Gusev

Data integrity
Integrity constraints: semantic conditions on the data

• Individual constraints on data items

• Uniqueness of the primary keys

• Dependencies between relations

Concurrency control

• Steps in executing a query

• Concurrent users of the database, interfering with the execution of one query by another

• Transaction: a set of operations that takes the database from one consistent state to another

• Solving the concurrency control problem: making transactions atomic operations (one at a time)

• Concurrent transactions: serializability theory (two-phase locking), read lock (many), write lock (one).

• Serializible transactions: first phase - accumulating locks, second phase - releasing locks.

• Deadlocks: deadlock detection algorithms.

• Distributed execution problems:

• release a lock at one node (all locks accumulated at the other node?)

• strict two-phase locking

The Transaction Model

• Examples of primitives for transactions.

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

The Transaction Model

a) Transaction to reserve three flights commits

b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION

reserve WP -> JFK;

reserve JFK -> Nairobi;

reserve Nairobi -> Malindi;

END_TRANSACTION

(a)

BEGIN_TRANSACTION

reserve WP -> JFK;

reserve JFK -> Nairobi;

reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION

(b)

Distributed Transactions

a) A nested transaction

b) A distributed transaction

ACID
• ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties that

guarantee that database transactions are processed reliably.

– Atomicity refers to the ability of the DBMS to guarantee that either all of

the tasks of a transaction are performed or none of them are.

– Consistency refers to the database being in a legal state when the

transaction begins and when it ends. This means that a transaction

cannot break the rules, or integrity constraints, of the database.

– Isolation means that no operation outside the transaction can ever see

the data in an intermediate state. More formally, isolation means the

transaction history (or schedule) is serializable.

– Durability refers to the guarantee that once the user has been notified of

success, the transaction will persist, and not be undone. This means it

will survive system failure, and that the database system has checked

the integrity constraints and won't need to abort the transaction. Many

databases implement durability by writing all transactions into a log that

can be played back to recreate the system state right before the failure.

A transaction can only be deemed committed after it is safely in the log.

Write Ahead Logging (WAL)

• Write Ahead Logging (WAL) is a family of

techniques for providing atomicity and durability

(two of the ACID properties) in database

systems. In a system using WAL, all

modifications are written to a log before they are

applied to the database. Usually both redo and

undo information is stored in the log.The

motivation for WAL is to allow updates of the

database to be done in-place.

Write Ahead Log

• a) A transaction

• b) – d) The log before each statement is executed

x = 0;

y = 0;

BEGIN_TRANSACTION;

x = x + 1;

y = y + 2

x = y * y;

END_TRANSACTION;

(a)

Log

[x = 0 / 1]

(b)

Log

[x = 0 / 1]

[y = 0/2]

(c)

Log

[x = 0 / 1]

[y = 0/2]

[x = 1/4]

(d)

Concurrency Control

• General organization of managers for handling

transactions.

Serializability

• A schedule (transaction history) is

serializable if its outcome (the resulting

database state) is equal to the outcome of

its transactions executed sequentially

without overlapping.

Serializability (example)

• a) – c) Three transactions T1, T2, and T3

• d) Possible schedules

BEGIN_TRANSACTION

x = 0;

x = x + 1;

END_TRANSACTION

(a)

BEGIN_TRANSACTION

x = 0;

x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION

x = 0;

x = x + 3;

END_TRANSACTION

(c)

Schedule 1 x = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3 Legal

Schedule 2 x = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3; Legal

Schedule 3 x = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3; Illegal

(d)

Two-Phase Locking

• According to the Two phase locking protocol, locks are handled by a

transaction in two distinct, consecutive phases during the

transaction's execution:

– Phase 1: Locks are acquired and no locks are released.

– Phase 2: Locks are released and no locks are acquired.

• The Strict two phase locking (S2PL) class of schedules is the

intersection of the 2PL class with the class of schedules possessing

the Strictness property. To comply with the S2PL protocol a

transaction needs to comply with 2PL, and release its write

(exclusive) locks only after it has ended, i.e., being either committed

or aborted.

Two-Phase Locking

• Two-phase locking.

SS2PL
• Strong strict two phase locking (SS2PL) is a common mechanism utilized in

database systems to enforce both conflict serializability and strictness of a

schedule. SS2PL is the name of the resulting schedule property as well,

which is also called rigorousness. In this mechanism each data item is

locked by a transaction before accessing it (any read or write operation). As

a result, access by another transaction may be blocked, typically upon

conflict, depending on lock type and the other transaction's access

operation type. All locked data on behalf of a transaction (i.e., both its write

(exclusive) and read (shared) locks) are released only after the transaction

has ended (either committed or aborted).

• Mutual blocking between transactions results in a deadlock, where

execution of these transactions is stalled, and no completion can be

reached. A deadlock is a reflection of a potential cycle in the conflict graph,

that would occur without the blocking. Deadlocks are resolved by aborting a

transaction involved with such potential cycle. It is often detected using a

wait-for graph that indicates which transaction is "waiting for" a lock release

by which transaction, and a cycle means a deadlock. Aborting one

transaction per cycle is sufficient to break the cycle.

SS2PL (cont’d)

• Strong strict two-phase locking.

Data integrity
Backup and recovery

• The problem of keeping a transaction atomic: successful or failed

What if some of the intermediate steps failed?

• Log of database activity: use the log to undo a failed transaction.

• More problems: when to write the log, failure of the recovery system executing the log.

Security and access control

• Access rules for relations or attributes. Stored in a special relation (part of the data dictionary).

• Content-independent and content-dependent access control

• Content-dependent control: access to a view only or query modification

(e.g. and-ing a predicate to the WHERE clause)

• Discretionary and mandatory access control

Knowledge Bases and KBS (and area of AI)

• Information, Data, Knowledge (data in a form that allows reasoning)

• Basic components of a KBS

• Knowledge base

• Inference (reasoning) mechanism (e.g. forward/backward chaining)

• Explanation mechanism/Interface

• Rule-based systems (medical diagnostics, credit evaluation etc.)

