Introduction and Course Overview

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications
Lecture 1, September 5, 2007

Introduction

- What do we mean by a computer?
- Different types: desktop, servers, embedded devices
- Different uses: automobiles, graphics, finance, genomics...
- Different manufacturers: Intel, Apple, IBM, Microsoft, Sun...
- Different underlying technologies and different costs!
- Analogy: Consider a course on "automotive vehicles"
- Many similarities from vehicle to vehicle (e.g., wheels)
- Huge differences from vehicle to vehicle (e.g., gas vs. electric)
- Best way to learn:
- Focus on a specific instance and learn how it works
- While learning general principles and historical perspectives

Components of Computing Systems

- Hardware: Circuit boards, chips, disk drives, peripherals, wires, etc.
- Software: Programs (sequences of instructions for the computer to carry out)
- Data (information in
 its digital form)

The Processor

Our primary focus in the first half of the course: The processor (datapath and control)

- implemented using millions of transistors
- Impossible to understand by looking at each transistor
- We need...

Abstraction...

...removes or hides complex details.

Distinct Processors Sold

How do computers work?

- Need to understand abstractions such as:
- Applications software
- Systems software
- Assembly Language
- Machine Language
- Architectural Issues: i.e., Caches, Virtual Memory, Pipelining
- Sequential logic, finite state machines
- Combinational logic, arithmetic circuits
- Boolean logic, 1s and 0s
- Transistors used to build logic gates (CMOS)
- Semiconductors/Silicon used to build transistors
- Properties of atoms, electrons, and quantum dynamics
- So much to learn!

Instruction Set Architecture

- A very important abstraction
- interface between hardware and low-level software
- standardizes instructions, machine language bit patterns, etc.
- advantage: different implementations of the same architecture
- disadvantage: sometimes prevents using new innovations
- Modern instruction set architectures:
- IA-32, PowerPC, MIPS, SPARC, ARM, and others

Historical Perspective

- ENIAC built in World War II was the first general purpose computer
- Used for computing artillery firing tables
- 80 feet long by 8.5 feet high and several feet wide
- Each of the twenty 10 digit registers was 2 feet long
- Used 18,000 vacuum tubes, weighed 30 tons
- Performed 1900 additions per second

-Since then:
Moore's Law:
transistor capacity doubles every 18-24 months

Layers of Software

Application packages

High-level languages
Assembly languages
Systems
software

Memory

- Volatile/primary/main (DRAM: Dynamic Random Access Memory)
- Nonvolatile/secondary (magnetic/hard disk)

Communicating with Other Computers

- Resource sharing
- Nonlocal (remote) access
- Local area network (LAN)
- Wide area network (WAN)

Technologies for Building Processors and Memory

- Transistor: An on/off switch controlled by an electric signal
- Vacuum tube: Consists of a hollow glass tube about 5 to 10 cm long from which as much air has been removed as possible; Uses an electron beam to transfer data
- Very large scale integrated (VLSI) circuit: A device containing hundreds of thousands to millions of transistors

Integrated Circuits (Chips)

16-pin

SSI: 1 to 10 gates LSI: 100 to 100,000 gates VLSI: more than 100,000 gates MSI: 10 to 100 gates

SSI: Small-Scale Integration
MSI: Medium-Scale Integration
LSI: Large-Scale Integration
VLSI: Very-Large-Scale Integration

Manufacturing Chips

- Silicon crystal ingot: A rod composed of a silicon crystal that is between 8 and 12 inches in diameter and about 12 to 24 inches long
- Wafer: A slice from a silicon ingot no more than 0.1 inch thick, used to create chips
- Dies: The individual rectangular sections that are cut from a wafer, more informally known as chips
- Yield: The percentage of good dies from the total number of dies on the wafer
- Bonding: The process of connecting dies to I/O pins
- CMOS (complementary metal oxide semiconductor): Does not directly consume power when idle

