Fundamentals of Information Theory II

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 17, November 7, 2007

Reading

- http://mathworld.wolfram.com/SamplingTheorem.html
- http://cwx.prenhall.com/bookbind/pubbooks/cyganski/chapter0/deluxe.html demo applets

Representing signals: frequency, time, amplitude

- Baseband signals: F(t) limited in frequency in the interval [-W, W].
- Broadband signals (carrier based):

Moved in the interval $[W_c - W, W_c + W]$

Example: $F(t) = F_s(t) \sin(W_c t)$

Representing signals by sample points

- Theoretically, infinite number of points are required.
- Locating a point in space: coordinate systems.
- Locating a function F(t):
 vector F(t₁), F(t₂), ..., F(t_n)
 t_n sample points
- Orthonormal sets of functions: $\{G_n(X)\}$, where:

$$\int_{a}^{b} G_{n}(x)G_{m}(x)dx = \begin{cases} 1 & \text{if } n = m; \\ 0 & \text{if } n \neq m. \end{cases}$$

Expansion of a function (Fourier series):

$$F(x) = \sum_{n=-\inf}^{n=+\inf} C_n G_n(x)$$

$$C_m = \int_{-\inf}^{+\inf} F(x) G_m(x) dx$$

Displaying 2D Magnitude Spectra of Quantization Noise

Sampling theorem

• Orthonormal set: $\{sinc_n(t)\}, t \in [-T, +T], T \to inf.$

$$sinc_n(t) = \frac{\sin(2\pi W(t - \frac{n}{2W}))}{2\pi W(t - \frac{n}{2W})}$$

• Fourier expansion of F(t):

$$F(t) = \sum_{n=-\inf}^{n=+\inf} C_n \frac{\sin(2\pi W(t - \frac{n}{2W}))}{2\pi W(t - \frac{n}{2W})}$$

- Sample points: ..., $t_1, t_2, ..., t_n, ...$, where $t_n = \frac{n}{2W}$, $n \in [-\inf, +\inf]$ and [-W, +W] is the frequency interval.
- Let $t = t_n$, for $n \in [-\inf, +\inf]$. Then all terms in the Fourier expansion of F(t) above are 0 except one, $\frac{\sin(0)}{0} = 1$. That is, $F(t_n) = C_n$.
- Hence (sampling theorem):

$$F(t) = \sum_{n=-\inf}^{n=+\inf} f(t_n) \frac{\sin(2\pi W(t - \frac{n}{2W}))}{2\pi W(t - \frac{n}{2W})}$$

Constraints:

F(t) is limited in frequency in [-W, W],

There are infinite number of sample points (infinite time duration)

AD and DA conversion

- quantization (thresholds)
- amplifiers vs. repeaters
- generally very low error rates (regenerating digital values at relay points)

Error detection and correction

- Binary case: 000,111 for 0,1 one error correcting code
- Arbitrary waveform: three instead of one sample point widening the bandwidth (2TW dimensions)