Fundamentals of Probability

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology
Lecture 16, October 31, 2007

Reading

- http://mathworld.wolfram.com/Probability.html

Probability

- Probability is the chance that a particular event will occur expressed on a linear scale from 0 (impossibility) to 1 (certainty), or as a percentage between 0 and 100\%.
- Before the middle of the 17th century, the term 'probable' (Latin probabilis) meant 'approvable'. A probable action or opinion was one of the kind that sensible people would choose to take or hold.

Frequency Approach

- Under the frequency approach, probability is measured as the frequency of outcomes of independent, well-defined (sufficiently similarly conducted) independent random experiments, such as flipping a coin or rolling a die. Probability of the event E is $P(E)=N(E) / N$,
where N is the number of experiments and $N(E)$ is the number of experiments with the outcome E .

Bayesian Approach

- Probability exists as a quantitative expression of the subjective plausibility that the event will occur, even if we cannot estimate its value by measurement.
- We can estimate parameters of an underlying distribution based on the properties of the observed distribution (a histogram).

Probability Axioms

Let

$$
S \equiv \bigcup_{i=1}^{N} E_{i}
$$

where N is either finite or ∞, and let $P\left(E_{i}\right)$ be the probability of the event E_{i}. Then

1. $0 \leq P\left(E_{j}\right) \leq 1$.
2. $P(S)=1$.
3. Additivity: $P\left(E_{i} \cup E_{j}\right)=P\left(E_{i}\right)+P\left(E_{j}\right)$ if E_{i} and E_{j} are mutually exclusive. In particular, $P\left(E_{j}^{\prime}\right)=1-P\left(E_{i}\right)$.
4. Countable additivity:

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)
$$

for $n=1,2,3, \ldots, N$, where $E_{1}, E_{2}, \ldots, E_{N}$ are mutually exclusive.

Joint Probability

- $P(A \cdot B)=P(A) \cdot P(B)$ if A and B are independent

Conditional Probability

- The conditional probability of an event assuming that has occurred equals

$$
P(A \mid B)=\frac{P(A \cdot B)}{P(B)}
$$

Bayes Theorem

$$
P(A \mid B)=\frac{P(A) \cdot P(B \mid A)}{P(B)}
$$

Interpretation: A is the cause, B is the effect. If B occurred, what is the probability that the cause of that was A ?

Law of Total Probability

$P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)$
where A_{1}, \ldots, A_{n} are mutually exclusive and exhaustive (i.e., B can occur with one and only one of them).

Bayesian Formula (Laplas)

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{\sum_{j=1}^{n} P\left(A_{j}\right) P\left(B \mid A_{j}\right)}
$$

Interpretation: Event B may occur under one and only one of Conditions $A_{1}, A_{2}, \ldots, A_{n}$. Their apriori probabilities are $P\left(A_{i}\right)$. An experiment is conducted, in which Event B did occur. Aposteriori probabilities of the conditions are different from the apriori ones. In other words, we re-evaluate the probabilities of these conditions based on the outcome of our experiment.

Example

- 5 urns with white and black balls:
- 2 urns of type $A_{1}: 2$ white and 3 black balls
- 2 urns of type $A_{2}: 1$ white and 4 black balls
- 1 urn of type $\mathrm{A}_{3}: 4$ white and 1 black balls

A ball was taken without looking from a randomly picked urn. The ball is white. What is the probability of its having come from an urn of type A_{3} ?

