Fundamentals of Probability

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 16, October 31, 2007

Reading

• <u>http://mathworld.wolfram.com/Probability.html</u>

Probability

- Probability is the chance that a particular event will occur expressed on a linear scale from 0 (impossibility) to 1 (certainty), or as a percentage between 0 and 100%.
- Before the middle of the 17th century, the term 'probable' (Latin *probabilis*) meant 'approvable'. A probable action or opinion was one of the kind that sensible people would choose to take or hold.

Frequency Approach

 Under the frequency approach, probability is measured as the frequency of outcomes of independent, well-defined (sufficiently similarly conducted) independent random experiments, such as flipping a coin or rolling a die. Probability of the event E is

 $\mathsf{P}(\mathsf{E}) = \mathsf{N}(\mathsf{E})/\mathsf{N},$

where N is the number of experiments and N(E) is the number of experiments with the outcome E.

Bayesian Approach

- Probability exists as a quantitative expression of the subjective plausibility that the event will occur, even if we cannot estimate its value by measurement.
- We can estimate parameters of an underlying distribution based on the properties of the observed distribution (a histogram).

Probability Axioms

Let

$$S \equiv \bigcup_{i=1}^{N} E_i,$$

where *N* is either finite or ∞ , and let $P(E_i)$ be the probability of the event E_i . Then

- 1. $0 \leq P(E_i) \leq 1$.
- 2. P(S)=1.
- 3. Additivity: $P(E_iUE_j) = P(E_i) + P(E_j)$ if E_i and E_j are mutually exclusive. In particular, $P(E'_i) = 1 P(E_j)$.
- 4. Countable additivity:

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} P(E_{i})$$

for n=1,2,3,...,N, where $E_1,E_2,...,E_N$ are mutually exclusive.

Joint Probability

• $P(A \cdot B) = P(A) \cdot P(B)$ if A and B are independent

Conditional Probability

• The conditional probability of an event assuming that has occurred equals

$$P(A \mid B) = \frac{P(A \cdot B)}{P(B)}$$

Bayes Theorem

$$P(A \mid B) = \frac{P(A) \cdot P(B \mid A)}{P(B)}$$

Interpretation: A is the cause, B is the effect. If B occurred, what is the probability that the cause of that was A?

Law of Total Probability $P(B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i)$

where A_1, \ldots, A_n are mutually exclusive and exhaustive (i.e., *B* can occur with one and only one of them).

Bayesian Formula (Laplas) $P(A_i | B) = \frac{P(A_i)P(B | A_i)}{\sum_{j=1}^{n} P(A_j)P(B | A_j)}$

Interpretation: Event *B* may occur under one and only one of Conditions $A_1, A_2, ..., A_n$. Their apriori probabilities are $P(A_i)$. An experiment is conducted, in which Event *B* did occur. *Aposteriori* probabilities of the conditions are different from the *apriori* ones. In other words, we re-evaluate the probabilities of these conditions based on the outcome of our experiment.

Example

- 5 urns with white and black balls:
 - 2 urns of type A_1 : 2 white and 3 black balls
 - 2 urns of type A_2 : 1 white and 4 black balls
 - 1 urn of type A_3 : 4 white and 1 black balls

A ball was taken without looking from a randomly picked urn. The ball is white. What is the probability of its having come from an urn of type A₃?