Fundamentals of Distributed
Systems ||

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 15, October 29, 2007

Reading

* http://www.cs.vu.nl/~ast/books/ds1/01.pdf

Andrew S. Tanenbaum, Maarten van Steen,
Distributed Systems: Principles and
Paradigms, Section 1.4

http://www.cs.vu.nl/~ast/books/ds1/01.pdf

Software Concepts

System Description Main Goal
Tightly-coupled operating system for multi- Hide and manage
DOS processors and homogeneous hardware
multicomputers resources
Loosely-coupled operating system for Offer local
NOS heterogeneous multicomputers (LAN and services to remote
WAN) clients
" . : Provide
Middleware Additional layer atop _of NOS implementing distribution
general-purpose services
transparency

* An overview of

DOS (Distributed Operating Systems)
NOS (Network Operating Systems)

« Middleware

Uniprocessor Operating
Systems

« Separating applications from operating
system code through a microkernel.

No direct data exchange between modules

2

v 54

4

OS interface

System call -7

applicati

User Memory Process File module
on module module
4 A A A
——————————————————— =

=
/Y

Microkernel

Hardware

\H_____‘_(_____F—' _____q_(____—/

User mode

Kernel mode

Multiprocessor Operating
Systems (1)

* A monitor to protect an integer against concurrent
access.

monitor Counter {
private:
int count = 0;
public:
int value() { return count;}
void incr () { count = count + 1;}

void decr() { count = count - 1;}

}

Multiprocessor Operating
Systems (2)

monitor Counter {

private: void decr() {
int count = 0; if (count ==0) {
int blocked_procs = 0; blocked_procs = blocked_procs + 1;
condition unblocked; wait (unblocked);
public: blocked_procs = blocked_procs — 1;
int value () { return count;} }
void incr () { else
if (blocked_procs == 0) count = count — 1;
count = count + 1; }
else 1

signal (unblocked);
}
« A monitor to protect an integer against

concurrent access by blocking a process.

Multicomputer Operating
Systems (1)

* General structure of a multicomputer operating

system
Machine A Machine B Machine C
Distributed applications
DistrlibLIJted operating systen; s:ervices
Kernel Kernel Kernel

1 1 1

Network

Multicomputer Operating

Systems (2)

« Alternatives for blocking and buffering in message

passing.

Possible
synhchronization
point |

Send

ender $;131
Sender -
buffer —

Receiver

| Receiver

buffer

Multicomputer Operating

Systems (3)

Synchronization point

Send buffer

Reliable comm.
guaranteed?

Block sender until buffer not full Yes Not necessary
Block sender until message sent No Not necessary
Block sender until message received No Necessary
Block sender until message delivered No Necessary

« Relation between blocking, buffering, and reliable

communications.

a)

b)

Distributed Shared Memory

Systems (1)

Pages of address
space distributed
among four
machines

Situation after
CPU 1 references
page 10

Situation If page
10 is read only and
replication is used

Shared global address space

o] 1]|2]3|4]|5]|6]7]|8]9]10[1112]13]14]15]

€— Memory

CIEEl n K EE

o

CPU 1 CPU 2 CPU 3 CPU 4
(a)

CIHE N EE D

910

CPU 1 CPU 2 CPU 3 CPU 4
(b)

CHE R EE D

210

CPU 1

CPU 3

CPU 4

(c)

Distributed Shared Memory
Systems (2)

« False sharing of a page between two independent

Processes.
Machine A Page transfer when Machine B
— B needs to be accessed T —
YAl R AN
— 1,
B | T »eier
Page transfer when T
Page p A needs to be accessed (Page p|
‘ Code using A ‘ Code using B

1 @1

- Two independent

data items

Network Operating System (1)

« General structure of a network operating system.

Machine A Machine B Machine C

Distributed applications

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

1 1 1

Network

Network Operating System (2)

 Two clients and a server in a network operating system.

Client 1

Client 2

Tt

Request

y

Reply

0

File server

=
=

Network

Disks on which
shared file system
IS stored

Network Operating System (3)

 Different clients may mount the servers in different
places.

Client 1 Client 2

Server 1 Server 2
! / games work
private pacman mail
pacwoman teaching
pacchild research
(a)
Client 1 Client 2
/ {
games private/games
work r——\ f Work'/—\
pacman mail pacman mail
pacwoman teaching pacwoman teaching
pacchild research pacchild research

(b) (©)

Positioning Middleware

* General structure of a distributed system as middleware.

Machine A Machine B Machine C

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

Middleware and Openness

Application Same Application
programming

- Interface

A A

— —

] N

Middleware [¥ Middleware
Common

Network OS prctocgl Network OS

In an open middleware-based distributed system, the
protocols used by each middleware layer should be the
same, as well as the interfaces they offer to applications.

Comparison between Systems

. A comparison between multiprocessor operating systems,
multicomputer operating systems, network operating systems,
and middleware based distributed systems.

Distributed OS

Item Network Middleware-
Multiproc. | Multicomp. 0S based 0S

Degree of transparency | Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS |1 N N N

Basis for communication Shared Messages Files Model specific
memory

Resource management Sekrjml’:c)raa:i Si?t?ﬁ:)lﬁte g Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

Clients and Servers

 General Interaction between a client and a server.

Wait for result
Client

Request

Provide service Time —»™

An Example Client and Server (1)

* The header.h file used by the client and server.

/* Definitions needed by clients and servers. i

#define TRUE 1

#define MAX_PATH 255 /* maximum length of file name */
#define BUF_SIZE 1024 /* how much data to transfer at once */
#define FILE_SERVER 243 /* file server's network address g
/* Definitions of the allowed operations */

#define CREATE = 1 /* create a new file */
#define READ 2 /* read data from a file and return it */
#define WRITE 3 /* write data to a file */
#define DELETE - /* delete an existing file */
/* Error codes. */

#define OK 0 /* operation performed correctly */
#define E_BAD_OPCODE -1 /* unknown operation requested */
#define E_BAD_PARAM -2 /* error in a parameter */
#define E_1O -3 /* disk error or other I/O error */

/* Definition of the message format. */
struct message {

long source; /* sender’s identity */
long dest; /* receiver’s identity */
long opcode; /* requested operation */
long count; /* number of bytes to transfer */
long offset; /* position in file to start /O */
long result; /* result of the operation */
char name[MAX_PATH]; /* name of file being operated on */

char data[BUF _SIZE]; /* data to be read or written */

An Example Client and Server (2)

#include <header.h>
void main(void) {

struct message mi, mz; /* incoming and outgoing messages
intr; /* result code
while(TRUE) { /* server runs forever
receive(FILE_SERVER, &mi); /* block waiting for a message
switch(mil.opcode) { /* dispatch on type of request
case CREATE: r=do_create(&mi, &m2); break;
case READ: r = do_read(&ml, &m2); break;
case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&ml, &m2); break;
default: r= E_BAD_OPCODE;
}
m2.result =r; /* return result to client
send(ml.source, &m2); /* send reply
} =

« A sample server.

*/

v
*/
i |

*/
*/

An Example Client and Server (3)

#include <header.h>

int copy(ciiar *src, char *dst){ /* procedure to copy file using the server

struct message mi; /" message buffer

long position; /* current file position

long client = 110; I* client’'s address

initialize(); /* prepare for execution

position = 0;

do {
ml.opcode = READ,; /* operation is a read
mi.offset = position; /* current position in the file
ml.count = BUF_SIZE;
strcpy(&mil.name, src); [* copy name-of file to be read to message
send(FILESERVER, &mi); /* send the message to the file server
receive(client, &ml); /* block waiting for the reply

/* Write the data just received to the destination file.

ml.opcode = WRITE; /* operation is a write
ml.offset = position; /* current position in the file
ml.count = ml.result; /* how many bytes to write
strcpy(&ml.name, dst); /* copy name of file to be written to buf
send(FILE_SERVER, &ml); /* send the message to the file server
receive(client, &ml); /* block waiting for the reply
position += ml.result; /* ml.result is number of bytes written

} while(ml.result > 0); /* iterate until done

return(ml.result >= 0 ? OK : ml result); /* return OK or error code

}

« A client using the server to copy a file.

*/
*/
*/
*/

*/

*/
*/
/t

*/

*/

"/
*/
"/
*/
K]
*/
*
*/

g |

how many bytes to read™/

Processing Level

The general organization of an Internet
search engine into three different layers

\A User-interface

‘ User interface J level
HTML page
Keyword expression containing list
HTML
generator Processing
Query Ranked list level
generator %7 of page titles
Ranking
Database queries component
Web page titles L
with meta-information
Database Data level
with Web pages J

Multitiered Architectures (1)

« Alternative client-server organizations (a) — (e).

User interfage

User interface

Application

Database

()

‘ User interface

Application

Database

()

Client machine

User interface

Application

Application

‘ Database

Server machine

(c)

User interface

Application

‘ Database

(d)

User interface

Application

Database

Database

(e)

Multitiered Architectures (2)

« An example of a server acting as a client.

Walit for result

User interface
(presentation)

Request
operation

Wait for data

Application
server

Return data

Database
server _ »

Modern Architectures

« An example of horizontal distribution of a Web service.

L —— Disks

>

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests | & | | &= | | o
handled in — 1 = 11 =
round-robin] = =

‘ fashion ‘ ‘ ‘
o

Q_JX,“/—J‘—/

