Fundamentals of Distributed Systems II

Instructor: Dmitri A. Gusev

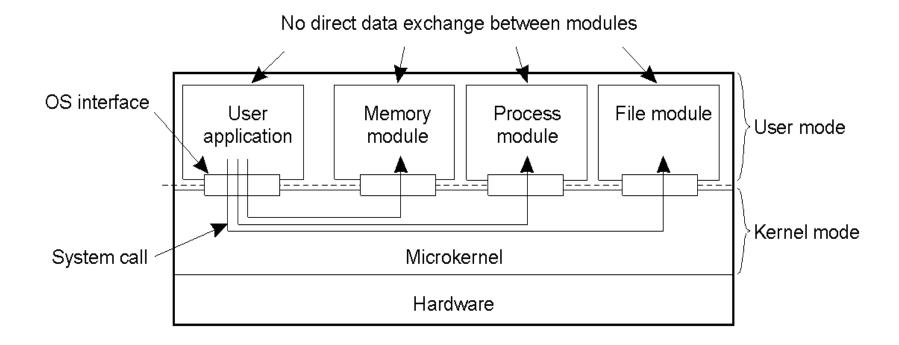
Fall 2007

CS 502: Computers and Communications Technology

Lecture 15, October 29, 2007

Reading

- http://www.cs.vu.nl/~ast/books/ds1/01.pdf
- Andrew S. Tanenbaum, Maarten van Steen, Distributed Systems: Principles and Paradigms, Section 1.4


Software Concepts

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

- An overview of
- DOS (Distributed Operating Systems)
- NOS (Network Operating Systems)
- Middleware

Uniprocessor Operating Systems

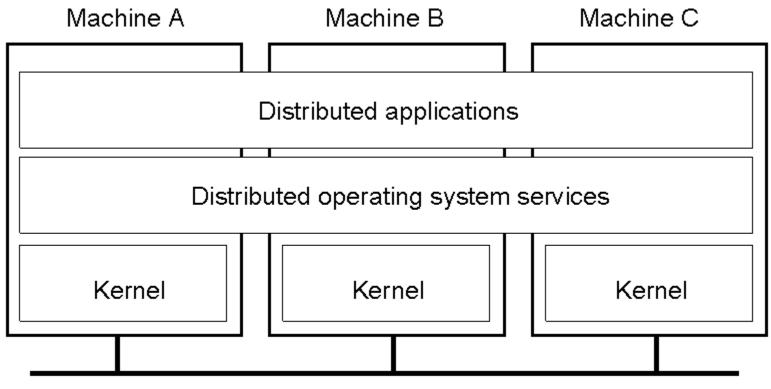
• Separating applications from operating system code through a microkernel.

Multiprocessor Operating Systems (1)

• A monitor to protect an integer against concurrent access.

```
monitor Counter {
private:
    int count = 0;
public:
    int value() { return count;}
    void incr () { count = count + 1;}
    void decr() { count = count - 1;}
}
```

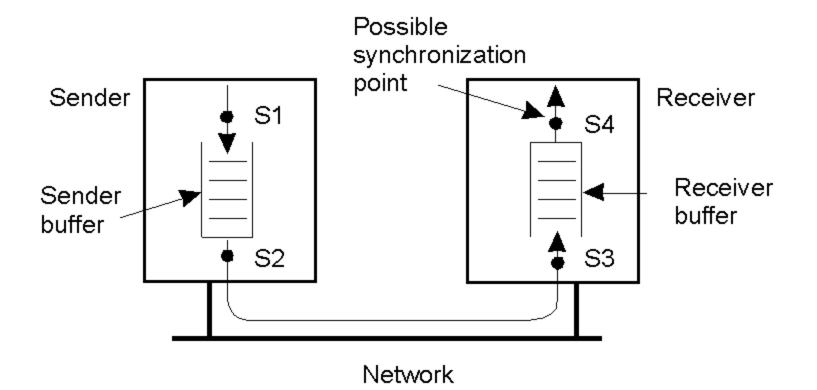
Multiprocessor Operating Systems (2)


```
monitor Counter {
private:
                                                   void decr() {
 int count = 0;
                                                   if (count == 0) {
 int blocked_procs = 0;
                                                    blocked_procs = blocked_procs + 1;
 condition unblocked;
                                                    wait (unblocked);
public:
                                                    blocked_procs = blocked_procs - 1;
 int value () { return count;}
                                                     }
 void incr () {
                                                    else
    if (blocked procs == 0)
                                                     count = count - 1;
      count = count + 1;
                                                   }
    else
                                                   }
      signal (unblocked);
```

}

• A monitor to protect an integer against concurrent access by blocking a process.

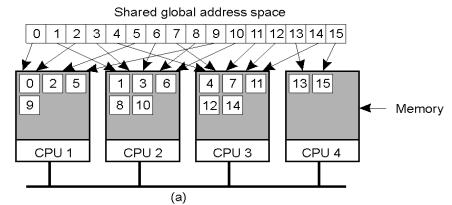
Multicomputer Operating Systems (1)


 General structure of a multicomputer operating system

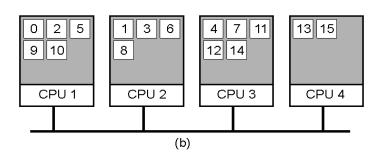
Network

Multicomputer Operating Systems (2)

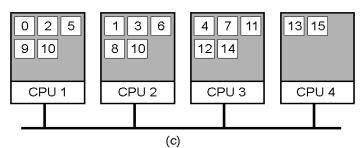
• Alternatives for blocking and buffering in message passing.


Multicomputer Operating Systems (3)

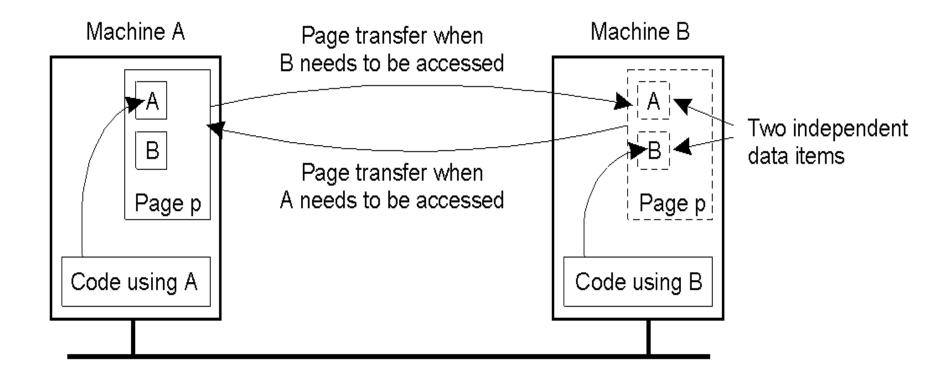
Synchronization point	Send buffer	Reliable comm. guaranteed?
Block sender until buffer not full	Yes	Not necessary
Block sender until message sent	No	Not necessary
Block sender until message received	No	Necessary
Block sender until message delivered	No	Necessary


• Relation between blocking, buffering, and reliable communications.

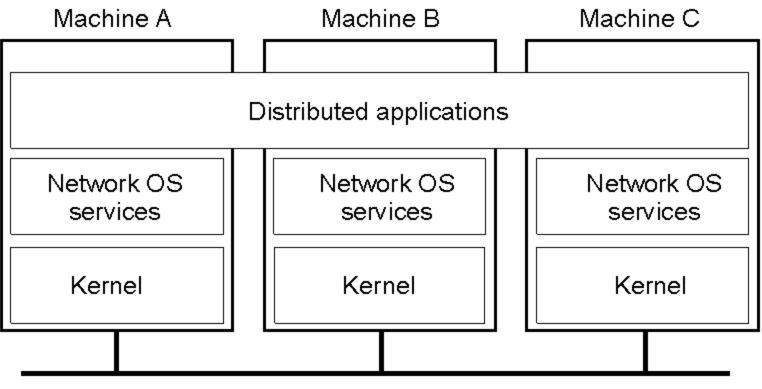
Distributed Shared Memory Systems (1)


a) Pages of address space distributed among four machines

b) Situation after
 CPU 1 references
 page 10

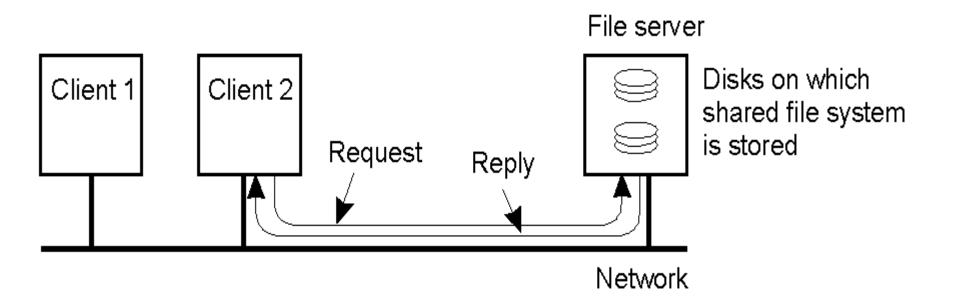


c) Situation if page
 10 is read only and
 replication is used

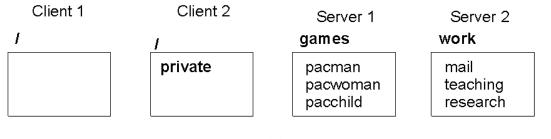

Distributed Shared Memory Systems (2)

• False sharing of a page between two independent processes.

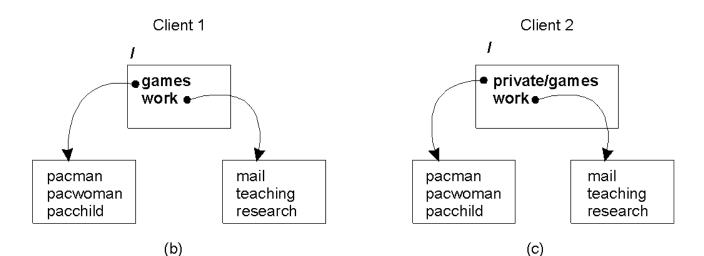
Network Operating System (1)


• General structure of a network operating system.

Network

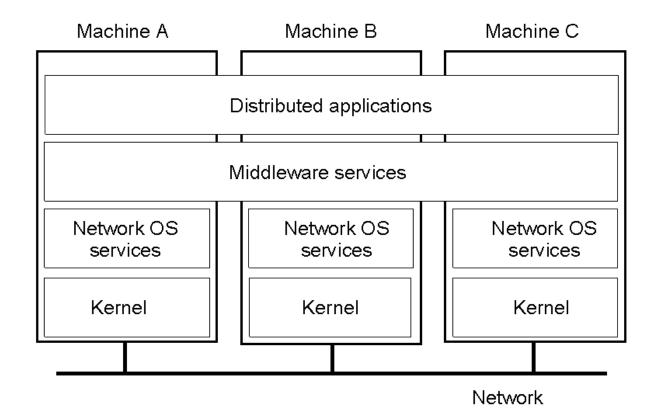

Network Operating System (2)

• Two clients and a server in a network operating system.

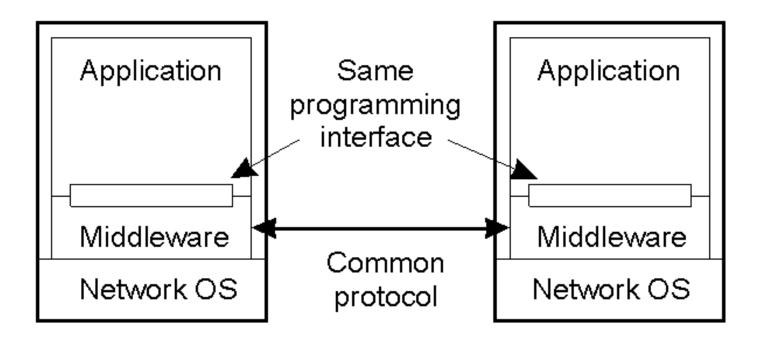


Network Operating System (3)

Different clients may mount the servers in different places.



(a)

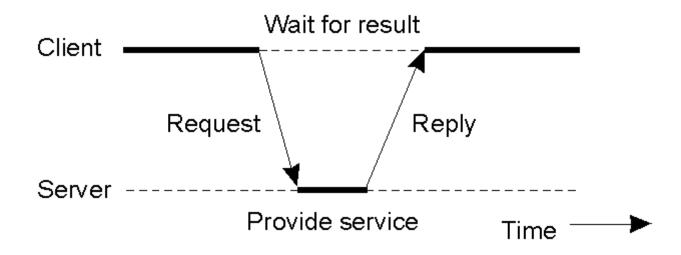


Positioning Middleware

• General structure of a distributed system as middleware.

Middleware and Openness

 In an open middleware-based distributed system, the protocols used by each middleware layer should be the same, as well as the interfaces they offer to applications.


Comparison between Systems

• A comparison between multiprocessor operating systems, multicomputer operating systems, network operating systems, and middleware based distributed systems.

Thomas	Distributed OS		Network	Middleware-	
Item	Multiproc.	Multicomp.	OS	based OS	
Degree of transparency	Very High	High	Low	High	
Same OS on all nodes	Yes	Yes	No	No	
Number of copies of OS	1	N	N	Ν	
Basis for communication	Shared memory	Messages	Files	Model specific	
Resource management	Global, central	Global, distributed	Per node	Per node	
Scalability	No	Moderately	Yes	Varies	
Openness	Closed	Closed	Open	Open	

Clients and Servers

• General interaction between a client and a server.

An Example Client and Server (1)

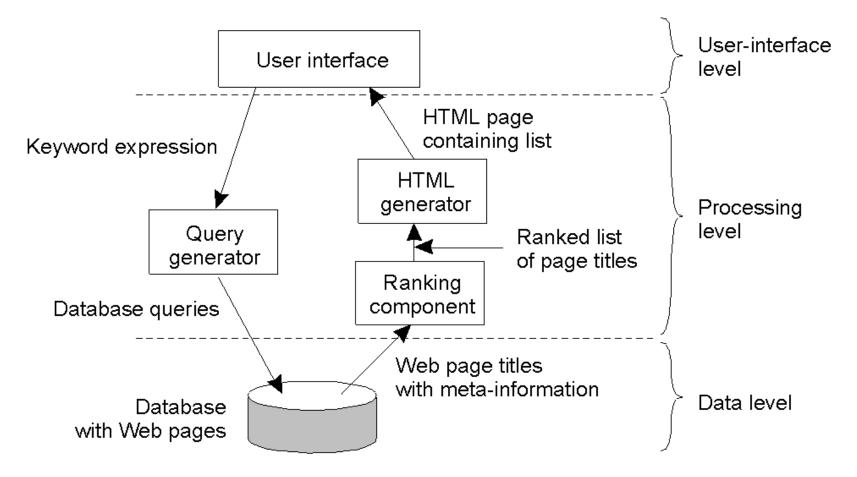
• The *header.h* file used by the client and server.

/* Definitions needed by clie #define TRUE #define MAX_PATH #define BUF_SIZE #define FILE_SERVER	nts and 1 255 1024 243	/* maximum length of file name	*/ */ */
/* Definitions of the allowed #define CREATE #define READ #define WRITE #define DELETE			*/ */ */
/* Error codes. */ #define OK #define E_BAD_OPCODE #define E_BAD_PARAM #define E_IO	0 -1 -2 -3	/* operation performed correctly /* unknown operation requested /* error in a parameter /* disk error or other I/O error	*/ */ */
/* Definition of the message struct message { long source; long dest; long opcode; long count; long offset; long result; char name[MAX_PATH char data[BUF_SIZE]; };		/* sender's identity /* receiver's identity /* requested operation /* number of bytes to transfer /* position in file to start I/O /* result of the operation /* name of file being operated on /* data to be read_or written	*/ */ */ */ */

An Example Client and Server (2)

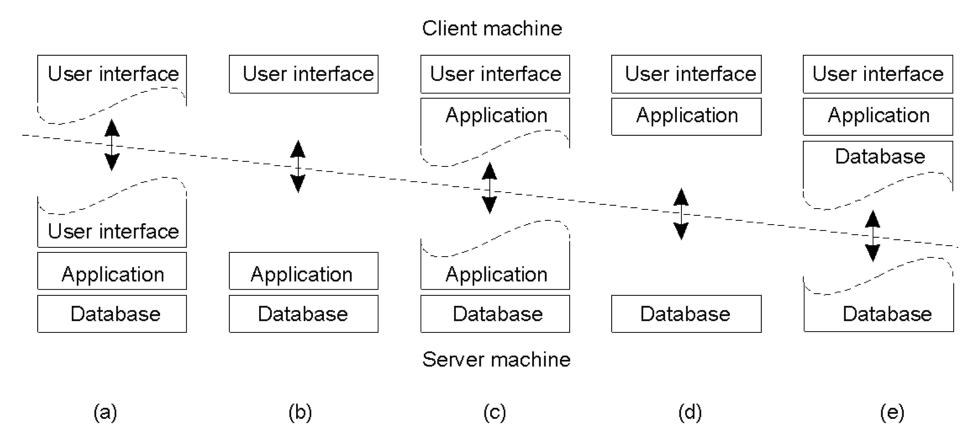
```
#include <header.h>
void main(void) {
                                         /* incoming and outgoing messages
                                                                                    */
    struct message ml, m2;
                                         /* result code
                                                                                    */
    int r:
                                                                                    */
                                         /* server runs forever
    while(TRUE) {
                                                                                    */
        receive(FILE_SERVER, &ml);
                                         /* block waiting for a message
                                                                                    */
                                         /* dispatch on type of request
        switch(ml.opcode) {
            case CREATE:
                              r = do_create(&ml, &m2); break;
            case READ:
                              r = do_read(&ml, &m2); break;
            case WRITE:
                              r = do_write(&ml, &m2); break;
            case DELETE:
                              r = do_delete(&ml, &m2); break;
                              r = E_BAD_OPCODE;
            default:
                                                                                    */
                                         /* return result to client
        m2.result = r:
                                                                                    */
        send(ml.source, &m2);
                                         /* send reply
```

A sample server.


An Example Client and Server (3)

<pre>#include <header.h> int copy(char *src, char *dst){ struct message ml; long position; long client = 110;</header.h></pre>	/* procedure to copy file using the server /* message buffer /* current file position /* client's address	*/ */ */
initialize(); position = 0; do {	/* prepare for execution	*/
ml.opcode = READ;	/* operation is a read	*/
ml.offset = position; ml.count = BUF_SIZE;	/* current position in the file	/* how many bytes to read*/
strcpy(&ml.name, src);	/* copy name of file to be read to message	*/
send(FILESERVER, &ml);	/* send the message to the file server	*/
receive(client, &ml);	/* block waiting for the reply	*/
/* Write the data just received to th	e destination file.	*/
ml.opcode = WRITE;	/* operation is a write	*/
ml.offset = position;	/* current position in the file	*/
ml.count = ml.result;	/* how many bytes to write	*/
strcpy(&ml.name, dst);	/* copy name of file to be written to buf	*/
send(FILE_SERVER, &ml);	/* send the message to the file server	*/ */
receive(client, &ml);	/* block waiting for the reply /* ml.result is number of bytes written	*/
<pre>position += ml.result; } while(ml.result > 0);</pre>	/* iterate until done	*/
return(ml.result >= 0 ? OK : ml result);		*/
}		

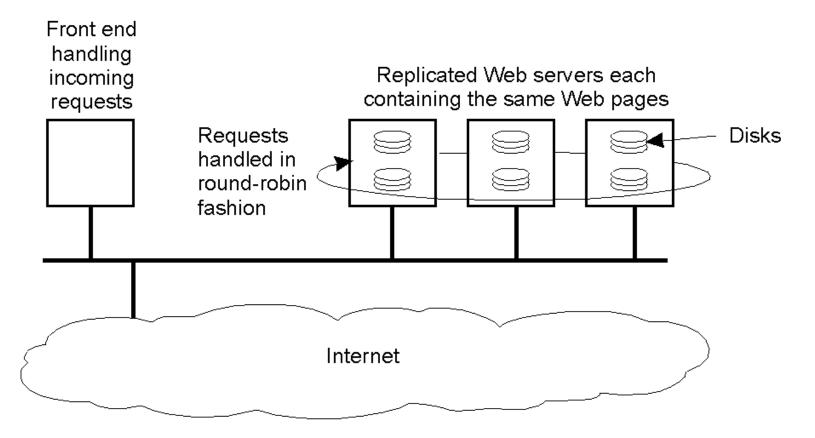
• A client using the server to copy a file.


Processing Level

• The general organization of an Internet search engine into three different layers

Multitiered Architectures (1)

• Alternative client-server organizations (a) – (e).


Multitiered Architectures (2)

• An example of a server acting as a client.

Modern Architectures

• An example of horizontal distribution of a Web service.

