Multiprocessors

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 13, October 17, 2007

Multiprocessors

* Idea: create powerful computers by connecting many smaller ones
good news: works for timesharing (better than supercomputer)

bad news: its really hard to write good concurrent programs
many commercial failures

Processor Processor s Processor

Processor Processor s Processor

! ! ! 7 i 7

Cache Cache oo Cache
Cache Cache e Cache
! ! !

Single bus I I I
I I Memory Memory s Memory

! ! !

Memory o Network

Questions

 How do parallel processors share data?
— single address space (SMP vs. NUMA)
— message passing

 How do parallel processors coordinate?
— synchronization (locks, semaphores)
— bullt into send / recelve primitives
— operating system protocols

 How are they imp
— connecteo
— connecteo

emented?
oy a single bus

oy a network

Programming multiprocessors

* Multiprogramming is difficult:
- Communication problems
- Requires knowledge about the hardware

- All parts of the program should be
parallelized

Multiprocessors connected by a single bus

Processor Processor . Processor
Cache Cache ‘a s Cache
Single bus

F Y F1
1
Memory e

 Each processor 1s smaller than a multichip processor
* The use of caches can reduce the bus traffic
* There exists mechanisms to keep caches and memory consistent

Multiprocessor cache coherency

Processor Proceszor “an Proceassor
} ! !
SNoop Cache tag Snoop Cache tagi Snoop Cache tag
fag " and data tag " and data o tag "l and data
! ! I i ! i
Single bus
Memaory e

Snooping (monitoring) protocols: locate all caches that share a block to
be written. Then:

« Write-invalidate: The writing processor causes all copies in other caches to be
invalidated before changing its local copy. Similar to write-back.

« Write-update (broadcast): The write processor sends the new data (the word)

over the bus. Similar to write-through.

* The role of the size of the block (broadcasting only a word, false sharing).

Write-invalidate
cache coherency
protocol based on a
write-back policy

Each cache block 1s 1n one

of the following states:

* Read only: the block 1s not
wtitten and may be shared

» Read/Write: the block 1s
written (dirty) and may not be
shared

» Invalid: the block does not
have valid data

Inwvalid Frocessor read miss

(not validi
cachew

Processor write miss

Read Only
{clean)

Frocessor writel
(hit or miss)

Processor

read miss

Read/Write
(dirty)

Processor write

a. Cache state transitions using signals from the processor

Invalidi
(not validi
cache block)

Read Onlhy

(clean)

walidate or

another processon

has a write miss
for this block

coen |

on bus);
write back old block

Read/Writel
(dirty)

b. Cache state transitions using signals from the bus

Synchronization
using coherency

 Using locks (semaphores)
« Atomic swap operation

!

Load lock:
variable

Unlocked?
(=07?)

Try to lock vanable using swap:i
read lock variable and then set
variable to locked value (1)

Step | P1 P2 P3 Bus activify
1 Has lock Spins, testing lock=0 Spins, testing lock=0 none
2 Sets lock to | Spins, testing lock=0 Spins, testing lock=0 Write-invalidate of lock
0 and 0 sent variable sent from PO
over bus
3 Cache miss Cache muss Bus decides to service P2
cache miss
4 Waits (bus busv) Lock=0 Cache miss for P2 zatisfied
5 Lock =0 Swap: reads locks and Cache miss for P1 satisfied
sets to 1
] Swap: reads locks and Value from swap=0 and | Write-invalidate of lock
sets to 1 1 sent over bus varnable sent from P2
7 Walue from swap=1 and | Owns the locks and Write-invalidate of lock
1 sent over bus updates the shared data | variable sent from P1
8 Spins, testing lock=0 None

Succeed?
(=07)

Begin updatel
of shared data

|

e,

Finish updatel

of shared data
—

Unlock:
set lock vanable to O

Supercomputers

Plot of top 500 supercomputer sites over a decade:

Single Instruction multiple data (SIMD)

500 Cluster

(network of
workstations)

400 Cluster
(network of

SMPs)
300

— Massively
parallel
processors
(MPPs)

200

100

Shared-
memory
multiprocessors
(SMPs)

Uniprocessors

Using multiple processors an
old idea

Some SIMD designs:

Maximum Communi-
Proc. mamory cations
Maximum Bits/ |clock rate| Number of size/system BW /system
no. nfprn: proc. l_'lle:t FPUs (MB) (MB/sac)

L1 Hiincls Hilac 1V 1 2,550 1972
IGL 2 2,550 1980
Gidyaar MPF 1'5 384 1 10 0 2 20,480 1982
Thiriking CM-2 65,536 1 7 2048 512 16,284 1987
Machings (optional)

Maspar MP-1216 16,384 4 25 0 286 or 1024 23,000 1989

AGURE 9.11.1 Characteristics of five SIMD computers. Mumber of FPUs means number of flaating- point units,

Costs for the the llliac IV escalated from $8 million in 1966 to $32 million in 1972
despite completion of only % of the machine. It took three more years before it was
operational!

“For better or worse, computer architects are not easily discouraged”

Lots of interesting designs and ideas, lots of failures, few successes

Topologies

-
- >
d
[1
A BVA BAVA BAV) |
L 4 A
;érrrrrrrr
a. 2-D grid or mesh of 16 nodes o lakakalakakakaka
_,@TTTTT‘FT?
Ralakalakatakaka
rRalakalakalakaka
"4
piakalalalalalals
NrmBalalakalalakala
[Ps|
alakakakakakalala
7]
b. Omega network

a. Crossbar

b. n-cube tree of 8 nodes (8 = 23 so n = 3)

Clusters

Constructed from whole computers
Independent, scalable networks
Strengths:

— Many applications amenable to loosely coupled
machines

— Exploit local area networks

— Cost effective / Easy to expand
Weaknesses:

— Administration costs not necessarily lower
— Connected using I/O bus

Highly available due to separation of memories
In theory, we should be able to do better

Google

* Google uses thousands of processors and
disks to handle thousands of queries per
second

Concluding Remarks

 Evolution vs. Revolution

“More often the expense of innovation comes from being too disruptive to
computer users”

(Binary (Mew

compatible) Uibraries) ~ \Recompile) {Reprogram))
2
2]
8
=] 2
[=] . B
o e 2 g
g £ 2 8 £
] g & 2
= (= o W o 2 o
= = 2 E =] = E
E E| = = 2 8 E E E
5 s g =2 52 2 &2
@ T E g5 o E = 58
= = o 5
g2 5 2§39 £ < I, ® B3
B E a & = B E = = 35 § ER
S15EEE% 3 8 358 2353
i o = =3 ol = < 3
EadF 5 = = o o oD = 4o
20 T T T T T | } oo bbb
— | | —
Evolutionary Revolutionary

“Acceptance of hardware i1deas requires acceptance by software people;
therefore hardware people should learn about software. And if software people
want good machines, they must learn more about hardware to be able to
communicate with and thereby influence hardware engineers.”

