Interfacing Peripherals

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 12, October 15, 2007

Interfacing Processors and
Peripherals

* |/O Design affected by many factors
(expandability, resilience)

« Performance:
— access latency
— throughput
— connection between devices and the
system
— the memory hierarchy
— the operating system

« A variety of different users (e.g., banks,
supercomputers, engineers)

/O Devices

Very diverse devices
— behavior (i.e., input vs. output)
— partner (who is at the other end?)

— data rate
Interrupts
Processar
Cacha
Memory- 112 bus
Main Hs] Hs] Hs]
mamary controller controller controller
T T T
I I Graphics ,.’ff Metwork ./
Disk Disk output | -
— —

FAGURE 8.2 A typical collection of /0 devices. The connections between the 160 devices, pro-
cessor, and memaory are usually called buses. Communication among the devices and the processor use both
interrupts and protocals on the bus, as we will see in this chapter. Figurs 8.11 on page 585 shows the organi-

zation for a desktop PC.

/O Example: Disk Drives

3
—— ,>

\ Tracks

!
_ J

=

Sectors

Track

« To access data:
— seek: position head over the proper track (3 to 14 ms. avg.)
— rotational latency: wait for desired sector (.5 / RPM)
— transfer: grab the data (one or more sectors) 30 to 80 MB/sec

Magnetic Disks

Read/write
head

Spindle

TR

Cylinder |

Track

(a) A single disk

Figure 5.5 The organization of a magnetic disk

Sector

(b) A hard disk drive

Measures of Disk Drive’'s Efficiency

« Seek time Is the time It takes for the
read/write head to get positioned over the
specified track

« Latency Is the time it takes for the
specified sector to spin to the read/write
head

* Access time = Seek time + Latency. This
IS the time it takes for a block to start being
read

* Transfer rate Is the rate at which data Is
transferred from the disk to memory

/O Example: Buses

Shared communication link (one or more wires)

Difficult design:
— may be bottleneck
— length of the bus
— number of devices
— tradeoffs (buffers for higher bandwidth increases latency)
— support for many different devices
— cost

Bus lines

— Control lines

— Data lines (data, commands, addresses)
Bus transactions

— Read (output): memory to I/O device

— Write (input): I/O device to memory

Types of buses:
— processor-memory (short high speed, custom design)
— backplane (high speed, often standardized, e.g., PCI)
— 1/O (lengthy, different devices, e.g., USB, Firewire)

Synchronous vs. Asynchronous
— use a clock and a synchronous protocol, fast and small
but every device must operate at same rate and
clock skew requires the bus to be short
— don’t use a clock and instead use handshaking

Bus transactions: output

* Request a read on control lines and supply data at the data lines
« Memory access
« Memory signals data availability and transter them on the data line to IO

Controd lines

Memory * Processor

Data lines

=

Disks

Contre! lines

WMemory
! Data lines
Disks

Contro! lines

Frocessor

Memory
! Data lines
Disks

Proceszsor

Ei=taii=

Bus transactions: input

« Write request for memory on the control lines and address on the data lines
« Memory signal the IO device that 1s ready and transters starts

Control lines

Memory - Processor
Ciata lines
Disks

Control lines

Processor

Memory
Ciata lines

Dizsks

Types of buses

Backplane bus

Processor -% %‘ %' ? Memaony

IFO devices

Procassor-memory bus

+ Memaorny

Processor » 3
Busi Bus Busi
adapter adapter adapter
O j Lo i 1
" ﬁ N i -

il

Processor-memory bus
Frocessar Memaory

Backplans
bus

Synchronous and Asynchronous buses

* Synchronous buses: Using a clock synchronized communication protocol
« All devices use a single clock
 Cannot be long
« Asynchronous buses: handshaking protocol
* Reading a word from memory:
 Read request (ReadReq)
« Data are ready to read (DataRdy)
* Acknowledge the ReadReq and DataRdy signals of the other party (Ack)

Ack

| e

[Implementing handshaking

[0 device

Memory

ReadReqg
Put addressi

an data
lines; asserti
ReadReq

ReadReq

aa ReadReqg

11
Fecord from
data linesi
and asserti
Ack

21
Release datal
lines; deassert
ReadReq

ReadReq
DataRdy

3,4

Drop Ack;)
put memaoryi
data on datai
lines; assert
DataRdy

all
Fead mamoryi
data from datal
lines:;i
assernt Ack

L]l
Felease datal

lines andi
DataRdy

7l
Deassert Ack

Mew /O request

Increasing the bus bandwidth

* Increasing the width of the data bus lines
» Using separate address and data lines
* Transferring multiple words (blocks)

Bus access: master and slave

Bus request lines

&

L
Memory U Frocessor
Bus
L Disks

Bus request lines

‘ Memory " , T ' Processor
Bus
Disks

Bus request lines

Memory < - Frocessor
Bus
Disks

* [/O device generates a request to the processor to use the bus
* The processor responds and generates the corresponding bus control signals
* The processor notities the device and the device places the address on the bus

Bus arbitration schemes

*Daisy chain arbitration: A single bus grant line 1s run through the devices from highest
priority to lowest. A higher priority device intercepts the bus grant signal. not allowing a
lower priority device to see it.

*Centralized, parallel arbitration: Using multiple request lines managed by a
centralized arbiter.

Distributed arbitration by self-selection: Multiple request lines, but the device
requesting the bus access determine who will be granted access. Each bus requesting
device places its 1dentity code on the bus.

Distributed arbitration by collision detection: Each device independently requests the
bus. Multiple simultaneous requests result in a collision, which 1s detected and solved.

Highest priority Lowest priority
Device 1 Device 2 L Device n
1 b F
Grant Grant
oy
Grant i
Busi Release L
arhiter |« A
Y
- i
Request

/O Bus Standards

Today we have two dominant bus standards:

Frewire (1304

Bus type /0 1/0

Baslc data bus width (signals) 4 2

'E|I3I3H|I'Ig -‘:'ISjI'I'IEI'ImI'IDUS EIE-}"I'IE:T'IFEIFIEIUS

Theoretical peak bandwidth 50 MEB/5ec [Arewra 400) of 0.2 MB/2ac (low speed),
100 MB/set (Flrswire BOO) 1.5 MB/sec (full spesd),

o &0 MB/=2¢ (high speed)

Hot plugable yos yas

Maximum numbar of devl oas &3 127

Faximurm bus |EII'IEU"I 4.5 metars B ometars

{COppar wire)

Stanidard name IEEE 1384, 13984b USE Implementors Fomm

FIGURE B.9 Key characteristics of two dominant 1/0 bus standards.

Interfacing I/O: still open questions

* How 1s a program I/O request transformed mto device
commands and communicated to the device?
» How 1s data actually transferred to or from memory?
» Why 1s the operating system mvolved?
* The IO devices are shared by multiple programs
managed by the operating system
* [/O devices use interrupts which are handled by the
operating system
» What 1s the role of the operating system?

The role of the OS

* The OS guarantees that each program accesses only the portion of the I/O

device to which 1t has rights.
* The OS provides abstractions (high-level functions) for handling low-level 'O

device operations.
* The OS handles the interrupts generated by I/O devices
* The OS provides equitable access to the shared I/O devices.

In order to perform these functions the OS must be able to
communicate to the I/O devices and to prevent the user programs
from communicating directly to the IO devices. That 1s:

* The OS must be able to give commands to I/O devices
* The I/O devices must be able to notify the OS for some events.
* Data must be transferred between memory and I/O devices.

Commands to I/O devices

» Memory mapped I/0O. Using a special address
space assigned to each I'O device - command
words, data buffers, status registers. The memory
system 1gnores these addresses.

* Special I/O instructions. Processor nstructions
specifying the device number and command word.
These nstructions can be executed only 1n
supervisor (OS) mode.

Communicating with the processor

* Polling. Periodically checking the status words of the I'O
devices. Polling depends on the type of the device. Some
devices mitiate operations independently (mouse), others -
under the control of the OS (disk).

o Interrupt-driven 1I/O. The device notifies the processor that it
has completed some operation or needs attention by causing an

interrupt.
* The I/O interrupt 1s asynchronous with respect to the instruction
execution (1n contrast to page faults or arithmetic exceptions). Check for
[/O mterrupt only when starting a new instruction.
* In addition, information for the device causing the interrupt and its
priority must be conveyed to the OS.

Iransterring data between I/0 device
and memory

* Data transfer using the processor
* Data transfer based on polling. For example, reading the mouse position.
» Interrupt-driven data transfer. When the OS recognizes an I/O interrupt it
reads the status word and reads or writes data.

* Direct memory access (DMA). Transterring data between the /O
and memory without involving the processor - DMA controller.
* The processor supplies to the DMA controller the device number, the type
of the operation, the memory address and the number of bytes to transfer.
* DMA starts the operation and arbitrates the bus while transferring the data.
* When the transfer is complete the DMA controller interrupts the processor.

DMA and the memory system

* DMA and virtual memory (physical or virtual pages?). Crossing
page boundaries when physical pages are used 1s a problem.
* Solution 1: using virtual pages.
* Solution 2: chained transfer (breaking DMA transfer into a series of
transfers each one within a single physical page).

* DMA and the cache (coherency problem)
» Route DMA through the cache (negative impact on performance).
* Invalidate the cache for I/O read or force write-back (flashing) for I'O
write.
» Selective (partial) mvalidation or flashing.

Designing an I/O system

« Taking in account latency constraints and
bandwidth constraints.

Pentium 4

* /O Options

T ookt | sisaiewes
processor Target segmant Perfamance PG Valua PC
SyStem bus (64 bit) BO0/533 MHZ 400 MHZ
oR 400 System bus (SO?AI\B/IE;,XGM GB/sec) hub {"north bridge”)
Memory - Package size, pins 42,5 = 42,5 mm, 1005 37.5 = 27.5 mm, 760
(3.2 GB/sec) (2.1 GB/sec) Graphics
Main controller output Mamory spaed DDR 400,333,/266 SDRAM | DDR 266,200, PC133 SDRAM
memory DDR 400 hub CSA Memory buses, widths 2% 72 164
DIMMs (3.2 GB/sec) (north bridge) (0.266 GBIsec) 7o e Mumber of DIMMS, DRAM MOt 4, 128,256,512 Mblts 2, 128/256,512 MBIts
82875P it Ethernet support
Maxi mum memaory capacity 4GB ZGB
; 266 MB/sec
Q 1§gr:\3IBA/\TA ()]l?g(;all\;eBl/ATA MGI’I’IDT}' ermor comeston avallaie? Yes no
Disk (sec) (sec) CD/DVD AGP graphics bus, speed yes, 8X or 4X no
Graphics controller axtarnal Intamal {Exremsa Graphlcs)
— CSA Glgablt Ethernet Intarface yes no
> Serial ATA Parallel ATA SOUTH [XI0ge INterfans speed (8 DIt 266 MHI 266 MHZ
Diek (150 MB/sec) (100 MB/sec) Tape 170 controller hub (“south bridge")
) 10 Fackaga size, pins 31 31 mm, 460 31 31 mm, 421
1?/%/97 CO’;:’%"e’ PGl bus: width, spaed, mastars 3201L, 33 MHz, 6 masters | 3200, 33 MHzZ, 6 masters
Stereo (sec) (southubridge) Y, Ethamet MAG cortrolier, Interace 100,10 Mot 10010 Mbit
(surround- 82801EB (20 MB/sec) - USE 2.0 ports, controllers 8,4 8, 3
sound) USB 2.0 (10/100 Mbit Etherne ATA 100 poris 2 2
(60 MB/sec) Sarlal ATA 150 contraller, ports yes, 2 na
PCI bus RAID O controllar yes it
(132 MB/sec) AC-ET audlo controllar, Interace VES YE5
1,0 management SMbLS 2.0, GPIO SMBUS 2.0, GRIO

AGURE 8.12 Two Pentium 4 1/0 chip sets from Inmtel. The 345GL north bridge uses many fewer
pins than the 875 by having just one memory bus and by omitting the AGP bus and the Gigabit Ethernet
interface. Mote that the serial nature of USE and Serial ATA means that two more USE ports and two mers
Serial ATA ports need just 39 more pins in the south bridge of the 875 versus the 845GL chip sets.

