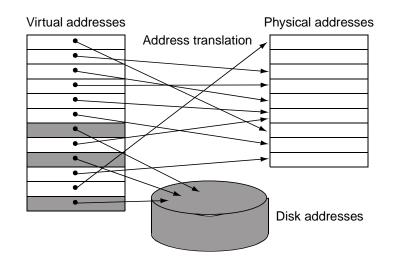
Virtual Memory

Instructor: Dmitri A. Gusev

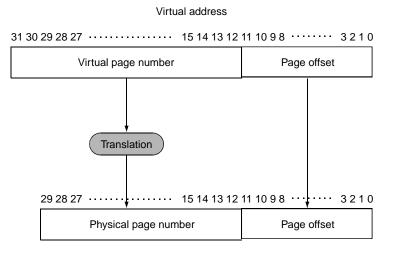

Fall 2007

CS 502: Computers and Communications Technology

Lecture 11, October 10, 2007

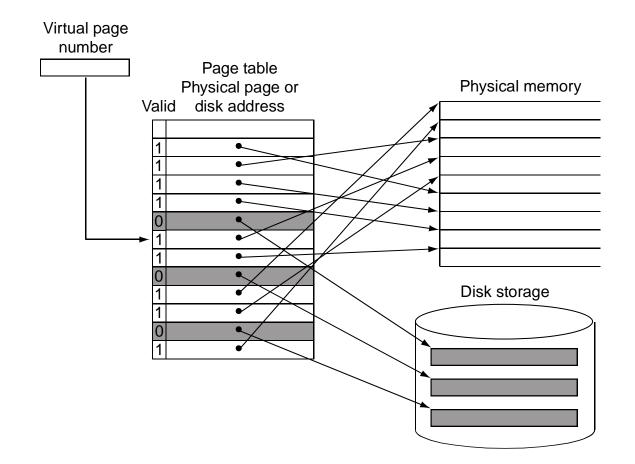
Virtual Memory

• Main memory can act as a cache for the secondary storage (disk)

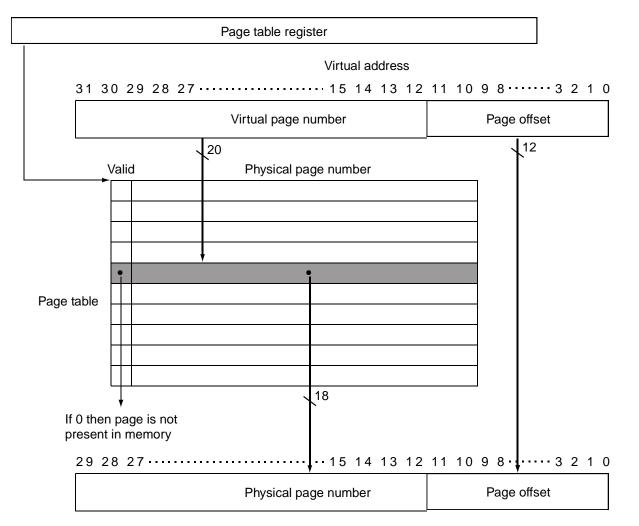


Advantages:

- illusion of having more physical memory
- program relocation
- protection

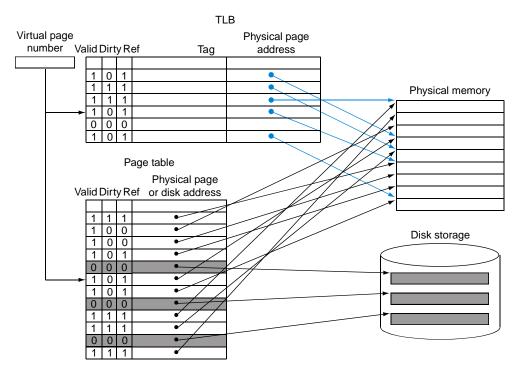

Pages: virtual memory blocks

- Page faults: the data is not in memory, retrieve it from disk
 - huge miss penalty, thus pages should be fairly large (e.g., 4KB)
 - reducing page faults is important (LRU is worth the price)
 - can handle the faults in software instead of hardware
 - using write-through is too expensive so we use writeback

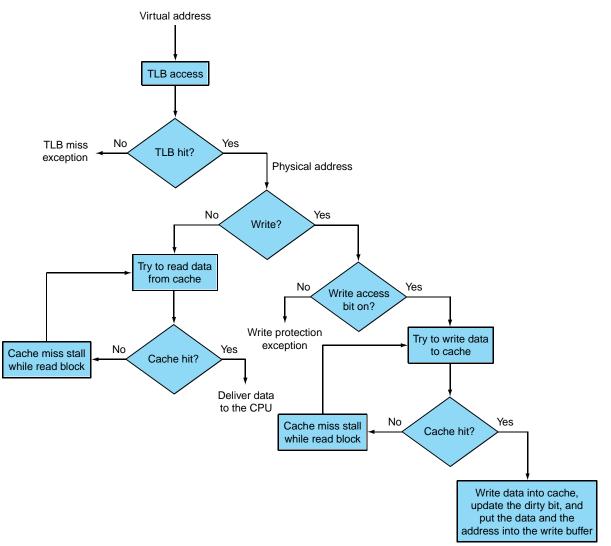


Physical address

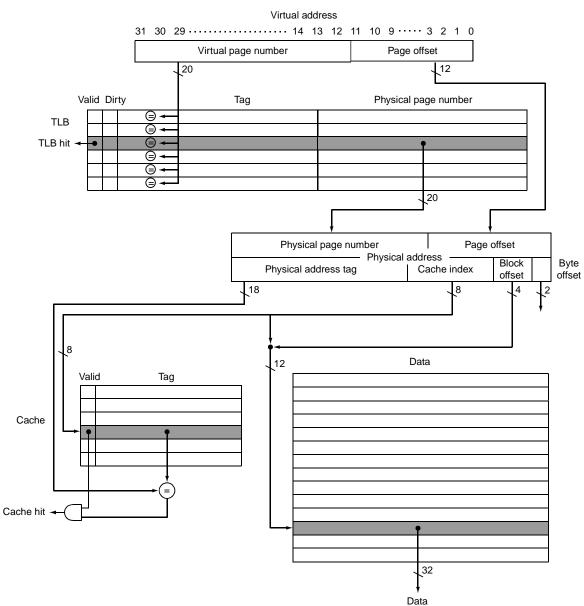
Page Tables


Page Tables

Physical address


Making Address Translation Fast

• A cache for address translations: translation lookaside buffer



Typical values: 16-512 entries, miss-rate: .01% - 1% miss-penalty: 10 – 100 cycles

TLBs and caches

TLBs and Caches

Modern Systems

Characteristic	Intel Pentium P4	AMD Opteron	
Virtual address	32 bits	48 bits	
Physical address	36 bits	40 bits	
Page size	4 KB, 2/4 MB	4 KB, 2/4 MB	
TLB organization	1 TLB for Instructions and 1 TLB for data Both are four-way set associative Both use pseudo-LRU replacement Both have 128 entries TLB misses handled in hardware	2 TLBs for instructions and 2 TLBs for data Both L1 TLBs fully associative, LRU replacement Both L2 TLBs are four-way set associativity, round-robin LRU Both L1 TLBs have 40 entries Both L2 TLBs have 512 entries TLB misses handled in hardware	

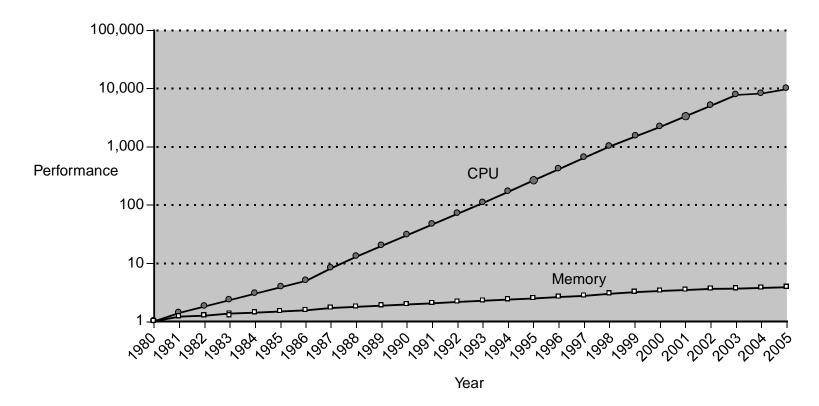
FIGURE 7.34 Address translation and TLB hardware for the Intel Pentium P4 and AMD

Opteron. The word size sets the maximum size of the virtual address, but a processor need not use all bits. The physical address size is independent of word size. The P4 has one TLB for instructions and a separate identical TLB for data, while the Opteron has both an L1 TLB and an L2 TLB for instructions and identical L1 and L2 TLBs for data. Both processors provide support for large pages, which are used for things like the operating system or mapping a frame buffer. The large-page scheme avoids using a large number of entries to map a single object that is always present.

Characteristic	Intel Pentium P4	AMD Opteron	
L1 cache organization	Split Instruction and data caches	Split Instruction and data caches	
L1 cache size	8 KB for data, 96 KB trace cache for RISC Instructions (12K RISC operations)	64 KB each for Instructions/data	
L1 cache associativity	4-way set associative	2-way set associative	
L1 replacement	Approximated LRU replacement	LRU replacement	
L1 block size	64 bytes	64 bytes	
L1 write policy	Write-through	Write-back	
L2 cache organization	Unified (Instruction and data)	Unified (instruction and data)	
L2 cache size	512 KB	1024 KB (1 MB)	
L2 cache associativity	8-way set associative	16-way set associative	
L2 replacement	Approximated LRU replacement	Approximated LRU replacement	
L2 block size	128 bytes	64 bytes	
L2 write policy	Write-back	Write-back	

FIGURE 7.35 First-level and second-level caches in the Intel Pentium P4 and AMD Opteron. The primary caches in the P4 are physically indexed and tagged; for a discussion of the alternatives, see the Elaboration on page 527.

Modern Systems


• Things are getting complicated!

MPU	AMD Opteron	Intrinsity FastMATH	Intel Pentium 4	Intel PXA250	Sun UltraSPARC IV
Instruction set architecture	IA-32, AMD64	MIPS32	IA-32	ARM	SPARC V9
Intended application	server	embedded	desktop	low-power embedded	server
Die size (mm ²) (2004)	193	122	217		356
Instructions Issued/clock	3	2	3 RISC ops	1	4 × 2
Clock rate (2004)	2.0 GHz	2.0 GHz	3.2 GHz	0.4 GHz	1.2 GHz
Instruction cache	64 KB, 2-way set associative	16 KB, direct mapped	12000 RISC op trace cache (~96 KB)	32 KB, 32-way set associative	32 KB, 4-way set associative
Latency (clocks)	3?	4	4	1	2
Data cache	64 KB, 2-way set associative	16 KB, 1-way set associative	8 KB, 4-way set associative	32 KB, 32-way set associative	64 KB, 4-way set associative
Latency (clocks)	3	3	2	1	2
TLB entries (I/D/L2 TLB)	40/40/512/ 512	16	128/128	32/32	128/512
Minimum page size	4 KB	4 KB	4 KB	1 KB	8 KB
On-chip L2 cache	1024 KB, 16-way set associative	1024 KB, 4-way set associative	512 KB, 8-way set associative	-	_
Off-chip L2 cache	-	-	-	-	16 MB, 2-way set associative
Block size (L1/L2, bytes)	64	64	64/128	32	32

FIGURE 7.36 Desktop, embedded, and server microprocessors in 2004. From a memory hierarchy perspective, the primary differences between categories is the L2 cache. There is no L2 cache for the low-power embedded, a large on-chip L2 for the embedded and desktop, and 16 MB off chip for the server. The processor clock rates also vary: 0.4 GHz for low-power embedded, 1 GHz or higher for the rest. Note that UltraSPARC IV has two processors on the chip.

Some Issues

Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

- Design challenge: dealing with this growing disparity
 - Prefetching? 3rd level caches and more? Memory design?