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• SRAM:

– value is stored  on a pair of inverting gates

– very fast but takes up more space than DRAM (4 to 6 transistors)

• DRAM:

– value is stored as a charge on capacitor (must be refreshed)

– very small but slower than SRAM (factor of 5 to 10)

Memories

B

A A

B

Word line

Pass transistor

Capacitor

Bit line



• Users want large and fast memories! 

SRAM access times are .5 – 5ns at cost of $4000 to $10,000 per GB.

DRAM access times are 50-70ns at cost of $100 to $200 per GB.

Disk access times are 5 to 20 million ns at cost of $.50 to $2 per GB.

• Try and give it to them anyway

– build a memory hierarchy

Exploiting Memory Hierarchy
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Locality

• A principle that makes having a memory hierarchy a good idea

• If an item is referenced,

temporal locality:  it will tend to be referenced again soon

spatial locality:   nearby items will tend to be referenced soon.

Why does code have locality?

• Our initial focus:  two levels (upper, lower)

– block:   minimum unit of data 

– hit:  data requested is in the upper level

– miss:  data requested is not in the upper level









• Two issues:

– How do we know if a data item is in the cache?

– If it is, how do we find it?

• Our first example:

– block size is one word of data

– "direct mapped"

For each item of data at the lower level, 

there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Cache



• Mapping:  address is modulo the number of blocks in the cache

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

0
0

0

Cache

Memory

0
0
1

0
1

0

0
1

1

1
0
0

1
0
1

1
1
0

1
1

1



• For MIPS:

What kind of locality are we taking advantage of?
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• Taking advantage of spatial locality:
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• Read hits

– this is what we want!

• Read misses

– stall the CPU, fetch block from memory, deliver to cache, restart 

• Write hits:

– can replace data in cache and memory (write-through)

– write the data only into the cache (write-back the cache later)

• Write misses:

– read the entire block into the cache, then write the word

Hits vs. Misses



• Make reading multiple words easier by using banks of memory

• It can get a lot more complicated...

Hardware Issues
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• Increasing the block size tends to decrease miss rate:

• Use split caches because there is more spatial locality in code:

Performance
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gcc 1 6.1% 2.1% 5.4%
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Performance

• Simplified model:

execution time = (execution cycles + stall cycles)  cycle time

stall cycles = # of instructions  miss ratio  miss penalty

• Two ways of improving performance:

– decreasing the miss ratio

– decreasing the miss penalty

What happens if we increase block size?





Compared to direct mapped, give a series of references that:

– results in a lower miss ratio using a 2-way set associative cache

– results in a higher miss ratio using a 2-way set associative cache

assuming we use the “least recently used” replacement strategy

Cache size (blocks) = Number of sets * Associativity

Tag size increases as the associativity increases

Decreasing miss ratio with associativity
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An implementation
Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0



Performance
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Decreasing miss penalty with 

multilevel caches
• Add a second level cache:

– often primary cache is on the same chip as the processor

– use SRAMs to add another cache above primary memory (DRAM)

– miss penalty goes down if data is in 2nd level cache

• Example:

– CPI of 1.0 on a 5 Ghz machine with a 5% miss rate, 100ns DRAM 

access

– Adding 2nd level cache with 5ns access time decreases miss rate to 

.5%

• Using multilevel caches:

– try and optimize the hit time on the 1st level cache

– try and optimize the miss rate on the 2nd level cache



Cache Complexities
• Not always easy to understand implications of caches:
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Cache Complexities
• Here is why:

• Memory system performance is often critical factor

– multilevel caches, pipelined processors,  make it harder to predict outcomes

– Compiler optimizations to increase locality sometimes hurt ILP

• Difficult to predict best algorithm:  need experimental data
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