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Memories

« SRAM:
— value is stored on a pair of inverting gates
— very fast but takes up more space than DRAM (4 to 6 transistors)

« DRAM:
— value is stored as a charge on capacitor (must be refreshed)
— very small but slower than SRAM (factor of 5 to 10)
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Exploiting Memory Hierarchy

« Users want large and fast memories!

: 2004
SRAM access times are .5 — 5ns at cost of $4000 to $10,000 per GB.

DRAM access times are 50-70ns at cost of $100 to $200 per GB.
Disk access times are 5 to 20 million ns at cost of $.50 to $2 per GB.

- Try and give it to them anyway
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An Expanded View of the Memory System
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Locality

« A principle that makes having a memory hierarchy a good idea

 Ifanitem is referenced,

temporal locality: it will tend to be referenced again soon
spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?

« Our initial focus: two levels (upper, lower)
— block: minimum unit of data
— hit: data requested is in the upper level
— miss: data requested is not in the upper level



Memory Hierarchy: How Does it Work?

« Temporal Locality (Locality in Time):

=> Keep most recently accessed data items closer to the processor
- Spatial Locality (Locality in Space).

=> Move blocks consists of contiguous words to the upper levels
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Memory Hierarchy: Terminology

« Hit: data appears in some block in the upper level (example: Block X)
— Hit Rate: the fraction of memory access found in the upper level
— Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

+ Miss: data needs to be retrieve from a block in the lower level (Block Y)
— Miss Rate =1 - (Hit Rate)
— Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
« Hit Time << Miss Penalty
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How is the hierarchy managed?

+ Registers <-> Memory

— by compiler (programmer?)

« cache <-> memory

— by the hardware

« memory <-> disks

— by the hardware and operating system (virtual memory)
— by the programmer (files)



Cache

 Two issues:
— How do we know if a data item is in the cache?
— If it is, how do we find it?
* Our first example:
— block size is one word of data
— "direct mapped"

\

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level



Direct Mapped Cache

« Mapping: address is modulo the number of blocks in the cache
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Direct Mapped Cache
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What kind of locality are we taking advantage of?



Direct Mapped Cache

« Taking advantage of spatial locality:
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Hits vs. Misses

Read hits
— this is what we want!

Read misses
— stall the CPU, fetch block from memory, deliver to cache, restart

Write hits:
— can replace data in cache and memory (write-through)

— write the data only into the cache (write-back the cache later)

Write misses:
— read the entire block into the cache, then write the word



Hardware Issues

« Make reading multiple words easier by using banks of memory
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Multiplexor
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b. Wide memory organization c. Interleaved memory organization

Memory

a. One-word-wide
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« |t can get a lot more complicated...



Performance

* Increasing the block size tends to decrease miss rate:

40%

35% -

30%

25% -

20%

Miss rate

15% \
10%

s ¢——00

a4

0% —

Block size (bytes)

256

1 KBO
e 8 KBO

16 KBO
@ 64 KBO

256 KB

« Use split caches because there is more spatial locality in code:

Block size in Instruction Data miss Effective combined
Program words miss rate rate miss rate
gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%




Performance

« Simplified model:
execution time = (execution cycles + stall cycles) x cycle time

stall cycles = # of instructions x miss ratio x miss penalty

« Two ways of improving performance:
— decreasing the miss ratio
— decreasing the miss penalty

What happens if we increase block size?



Improving cache performance

Direct mapped Set associative Fully associative
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Decreasing miss ratio with associativity

One-way set associative
(direct mapped)
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Four-way set associative
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Eight-way set associative (fully associative)
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Compared to direct mapped, give a series of references that:

— results in a lower miss ratio using a 2-way set associative cache
— results in a higher miss ratio using a 2-way set associative cache
assuming we use the “least recently used” replacement strategy

Cache size (blocks) = Number of sets * Associativity
Tag size increases as the associativity increases



Example of associativity

Direct mapped cache

2-way associative

Fully associative

Block address | Cache index (block)

0 {(0mod4)=10

] {6 mod 4)=2

] {(Emod4)=10

Ref# | Block address | Hit or Miss | Cache mndex 0 | Cache index 1 | Cache imndex 2 | Cache index 3
1 ] Iliss Memory[0]

2 8 Miss Memory[§]

3 ] Miss Memorv[0]

4 ] Miss Memory[0] Memory[6]

3 8 Iliss Memory[8] Memory[6]

Block address Cache index (set)

0 {(0mod2)=0

] {(6mod2)=10

2 {(8mod2)=0

Ref# | Block address | Hit or Miss | Cache set 0 Cache set 0 Cache set 1 Cache set 1
1 4] Iiss Memory[0]

2 8 Miss Memory[0] Memory[8]

3 ] Hit Memory[(] Iemory[ 8]

4 g Miss Memory[0] Memory[6§]

3 8 Iliss Memory[8] Memory[6]

Ref# | Block address | Hit or Miss | Cache block 0 | Cache block 1 | Cache block 2 | Cache block 3
1 ] Iliss Memory([(]

2 8 Miss Memory[0] Memory[8]

3 ] Hit Memoryv[(] Iemorv[ 8]

4 § Miss Memory[0] Memory[8] Memory([6]

3 8 Hit Memory[0] Memory[8] Memory[6]




An Implementation
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Performance
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Decreasing miss penalty with
multilevel caches

« Add a second level cache:
— often primary cache is on the same chip as the processor
— use SRAMs to add another cache above primary memory (DRAM)
— miss penalty goes down if data is in 2nd level cache

« Example:

— CPIl of 1.0 on a 5 Ghz machine with a 5% miss rate, 100ns DRAM
access

— Adding 2nd level cache with 5ns access time decreases miss rate to
5%

« Using multilevel caches:
— try and optimize the hit time on the 1st level cache
— try and optimize the miss rate on the 2nd level cache



Cache Complexities

Not always easy to understand implications of caches:
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Cache Complexities

* Hereis why:

Radix sort

Cache misses / item

14
Quicksort
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* Memory system performance is often critical factor
— multilevel caches, pipelined processors, make it harder to predict outcomes
— Compiler optimizations to increase locality sometimes hurt ILP

 Difficult to predict best algorithm: need experimental data



