
Memory Hierarchies

Fall 2007

CS 502: Computers and Communications Technology

Lecture 10, October 8, 2007

Instructor: Dmitri A. Gusev

• SRAM:

– value is stored on a pair of inverting gates

– very fast but takes up more space than DRAM (4 to 6 transistors)

• DRAM:

– value is stored as a charge on capacitor (must be refreshed)

– very small but slower than SRAM (factor of 5 to 10)

Memories

B

A A

B

Word line

Pass transistor

Capacitor

Bit line

• Users want large and fast memories!

SRAM access times are .5 – 5ns at cost of $4000 to $10,000 per GB.

DRAM access times are 50-70ns at cost of $100 to $200 per GB.

Disk access times are 5 to 20 million ns at cost of $.50 to $2 per GB.

• Try and give it to them anyway

– build a memory hierarchy

Exploiting Memory Hierarchy

2004

CPU

Level 1

Level 2

Level n

Increasing distance

from the CPU in

access time
Levels in the

memory hierarchy

Size of the memory at each level

Locality

• A principle that makes having a memory hierarchy a good idea

• If an item is referenced,

temporal locality: it will tend to be referenced again soon

spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?

• Our initial focus: two levels (upper, lower)

– block: minimum unit of data

– hit: data requested is in the upper level

– miss: data requested is not in the upper level

• Two issues:

– How do we know if a data item is in the cache?

– If it is, how do we find it?

• Our first example:

– block size is one word of data

– "direct mapped"

For each item of data at the lower level,

there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Cache

• Mapping: address is modulo the number of blocks in the cache

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

0
0

0

Cache

Memory

0
0
1

0
1

0

0
1

1

1
0
0

1
0
1

1
1
0

1
1

1

• For MIPS:

What kind of locality are we taking advantage of?

Direct Mapped Cache

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3220

Index

0

1

2

1023

1022

1021

=

Index

20 10

Byte
offset

31 30 13 12 11 2 1 0

• Taking advantage of spatial locality:

Direct Mapped Cache

Address (showing bit positions)

DataHit

Data

Tag

V Tag

32

16

=

Index

18 8 Byte
offset

31 14 13 2 1 06 5

4

Block offset

256

entries

512 bits18 bits

Mux

3232 32

• Read hits

– this is what we want!

• Read misses

– stall the CPU, fetch block from memory, deliver to cache, restart

• Write hits:

– can replace data in cache and memory (write-through)

– write the data only into the cache (write-back the cache later)

• Write misses:

– read the entire block into the cache, then write the word

Hits vs. Misses

• Make reading multiple words easier by using banks of memory

• It can get a lot more complicated...

Hardware Issues

CPU

Cache

Memory

Bus

One-word-wide

memory organization

a.

b. Wide memory organization

CPU

Cache

Memory

Bus

Multiplexor

CPU

Cache

Bus

Memory

bank 0

Memory

bank 1

Memory

bank 2

Memory

bank 3

c. Interleaved memory organization

• Increasing the block size tends to decrease miss rate:

• Use split caches because there is more spatial locality in code:

Performance

1 KB

8 KB

16 KB

64 KB

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
 r

a
te

64164

Block size (bytes)

Program

Block size in

words

Instruction

miss rate

Data miss

rate

Effective combined

miss rate

gcc 1 6.1% 2.1% 5.4%

4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%

4 0.3% 0.6% 0.4%

Performance

• Simplified model:

execution time = (execution cycles + stall cycles)  cycle time

stall cycles = # of instructions  miss ratio  miss penalty

• Two ways of improving performance:

– decreasing the miss ratio

– decreasing the miss penalty

What happens if we increase block size?

Compared to direct mapped, give a series of references that:

– results in a lower miss ratio using a 2-way set associative cache

– results in a higher miss ratio using a 2-way set associative cache

assuming we use the “least recently used” replacement strategy

Cache size (blocks) = Number of sets * Associativity

Tag size increases as the associativity increases

Decreasing miss ratio with associativity

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

0

1

Four-way set associative

TagTag Data DataSet

0

1

2

3

Two-way set associative

Tag DataBlock

0

1

2

3

4

5

6

7

One-way set associative

(direct mapped)

An implementation
Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

Performance

Associativity

0

One-way Two-way

3%

6%

9%

12%

15%

Four-way Eight-way

1 KB

2 KB

4 KB

8 KB

16 KB

32 KB
64 KB 128 KB

Decreasing miss penalty with

multilevel caches
• Add a second level cache:

– often primary cache is on the same chip as the processor

– use SRAMs to add another cache above primary memory (DRAM)

– miss penalty goes down if data is in 2nd level cache

• Example:

– CPI of 1.0 on a 5 Ghz machine with a 5% miss rate, 100ns DRAM

access

– Adding 2nd level cache with 5ns access time decreases miss rate to

.5%

• Using multilevel caches:

– try and optimize the hit time on the 1st level cache

– try and optimize the miss rate on the 2nd level cache

Cache Complexities
• Not always easy to understand implications of caches:

Radix sort

Quicksort

Size (K items to sort)

0

4 8 16 32

200

400

600

800

1000

1200

64 128 256 512 1024 2048 4096

Radix sort

Quicksort

Size (K items to sort)

0

4 8 16 32

400

800

1200

1600

2000

64 128 256 512 1024 2048 4096

Theoretical behavior of

Radix sort vs. Quicksort

Observed behavior of

Radix sort vs. Quicksort

Cache Complexities
• Here is why:

• Memory system performance is often critical factor

– multilevel caches, pipelined processors, make it harder to predict outcomes

– Compiler optimizations to increase locality sometimes hurt ILP

• Difficult to predict best algorithm: need experimental data

Radix sort

Quicksort

Size (K items to sort)

0

4 8 16 32

1

2

3

4

5

64 128 256 512 1024 2048 4096

