Memory Hierarchies

Instructor: Dmitri A. Gusev

Fall 2007

CS 502: Computers and Communications Technology

Lecture 10, October 8, 2007

Memories

« SRAM:
— value is stored on a pair of inverting gates
— very fast but takes up more space than DRAM (4 to 6 transistors)

« DRAM:
— value is stored as a charge on capacitor (must be refreshed)
— very small but slower than SRAM (factor of 5 to 10)

Word line

Pass transistor
o— o—
B B Capacitor g

Bit line

Exploiting Memory Hierarchy

« Users want large and fast memories!

: 2004
SRAM access times are .5 — 5ns at cost of $4000 to $10,000 per GB.

DRAM access times are 50-70ns at cost of $100 to $200 per GB.
Disk access times are 5 to 20 million ns at cost of $.50 to $2 per GB.

- Try and give it to them anyway

CPU

— build a memory hierarchy |

Increasing distance
Level 1 from the CPU in

access time
Levels in the / Level 2 \
memory hierarchy
/ Level n \

Size of the memory at each level

An Expanded View of the Memory System

Processor -
Control T
- Memaory
Memory
- -

— — Memory

Datapath| = = :
Speed: Fastest Slowest
Biggest

Size: Smallest
Cost: Highest Lowest

Locality

« A principle that makes having a memory hierarchy a good idea

 Ifanitem is referenced,

temporal locality: it will tend to be referenced again soon
spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?

« Our initial focus: two levels (upper, lower)
— block: minimum unit of data
— hit: data requested is in the upper level
— miss: data requested is not in the upper level

Memory Hierarchy: How Does it Work?

« Temporal Locality (Locality in Time):

=> Keep most recently accessed data items closer to the processor
- Spatial Locality (Locality in Space).

=> Move blocks consists of contiguous words to the upper levels

Lower Level
To Processor | Upper Level Memary
Memory

Blk X

From Processor - Blk Y

Memory Hierarchy: Terminology

« Hit: data appears in some block in the upper level (example: Block X)
— Hit Rate: the fraction of memory access found in the upper level
— Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

+ Miss: data needs to be retrieve from a block in the lower level (Block Y)
— Miss Rate =1 - (Hit Rate)
— Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
« Hit Time << Miss Penalty

To Processor

From Processor

Upper Level
Memory

Blk X

Lower I_.E"i.'Ell
Memory

BlkY

21935 Margan Kau'mann Fuclisners 9

How is the hierarchy managed?

+ Registers <-> Memory

— by compiler (programmer?)

« cache <-> memory

— by the hardware

« memory <-> disks

— by the hardware and operating system (virtual memory)
— by the programmer (files)

Cache

 Two issues:
— How do we know if a data item is in the cache?
— If it is, how do we find it?
* Our first example:
— block size is one word of data
— "direct mapped"

\

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Direct Mapped Cache

« Mapping: address is modulo the number of blocks in the cache

OOOOOOOO
OOOOOOOO
OOOOOOOO

|

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Direct Mapped Cache

° For M I PS_ Address (showing bit positions)

3130 ---131211--2 10
Byte
offset
Hit +420 <10
Tag
Index Data
Index Valid Tag Data
0
1
2
[p
1021
1022
1023
J420 J32
©,

What kind of locality are we taking advantage of?

Direct Mapped Cache

« Taking advantage of spatial locality:

Address (showing bit positions)

31 - 1413 -- 65-- 210
Hit 418 J8 44 Byte Data
A Tag offset
Index Block offset
18 bits 512 bits
V Tag Data
A
256
* hd * hd * | entries
- Y
di1e J.32 J.32 432
(=
Q Mux N
< _
432

Hits vs. Misses

Read hits
— this is what we want!

Read misses
— stall the CPU, fetch block from memory, deliver to cache, restart

Write hits:
— can replace data in cache and memory (write-through)

— write the data only into the cache (write-back the cache later)

Write misses:
— read the entire block into the cache, then write the word

Hardware Issues

« Make reading multiple words easier by using banks of memory

CPU CPU CPU
Multiplexor
Cache T 11 T1r TT T Cache
| Cache |
Bus Bus Bus
N - ~_
Memory Memory || Memory [| Memory || Memory
bank 0 bank 1 bank 2 bank 3

b. Wide memory organization c. Interleaved memory organization

Memory

a. One-word-wide
memory organization

« |t can get a lot more complicated...

Performance

* Increasing the block size tends to decrease miss rate:

40%

35% -

30%

25% -

20%

Miss rate

15% \
10%

s ¢——00

a4

0% —

Block size (bytes)

256

1 KBO
e 8 KBO

16 KBO
@ 64 KBO

256 KB

« Use split caches because there is more spatial locality in code:

Block size in Instruction Data miss Effective combined
Program words miss rate rate miss rate
gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Performance

« Simplified model:
execution time = (execution cycles + stall cycles) x cycle time

stall cycles = # of instructions x miss ratio x miss penalty

« Two ways of improving performance:
— decreasing the miss ratio
— decreasing the miss penalty

What happens if we increase block size?

Improving cache performance

Direct mapped Set associative Fully associative
Block# 01234567 Set 0 1 2 3 Set# 0
Data Data Data ‘
. I
T 1 - 1 - 1
a a a
g 5 g 5 g

o T o T1 o TTTTTTTT

12mod 8=4 12 mod4 =0 12mod1=0

Decreasing miss ratio with associativity

One-way set associative
(direct mapped)

Block Tag Data

o [|

Two-way set associative

Set Tag Data Tag Data

-

w N B O

N o o0 b~ WN PP

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

o [|

v

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

I rrrrr PP
Compared to direct mapped, give a series of references that:

— results in a lower miss ratio using a 2-way set associative cache
— results in a higher miss ratio using a 2-way set associative cache
assuming we use the “least recently used” replacement strategy

Cache size (blocks) = Number of sets * Associativity
Tag size increases as the associativity increases

Example of associativity

Direct mapped cache

2-way associative

Fully associative

Block address | Cache index (block)

0 {(0mod4)=10

] {6 mod 4)=2

] {(Emod4)=10

Ref# | Block address | Hit or Miss | Cache mndex 0 | Cache index 1 | Cache imndex 2 | Cache index 3
1] Iliss Memory[0]

2 8 Miss Memory[§]

3] Miss Memorv[0]

4] Miss Memory[0] Memory[6]

3 8 Iliss Memory[8] Memory[6]

Block address Cache index (set)

0 {(0mod2)=0

] {(6mod2)=10

2 {(8mod2)=0

Ref# | Block address | Hit or Miss | Cache set 0 Cache set 0 Cache set 1 Cache set 1
1 4] Iiss Memory[0]

2 8 Miss Memory[0] Memory[8]

3] Hit Memory[(] Iemory[8]

4 g Miss Memory[0] Memory[6§]

3 8 Iliss Memory[8] Memory[6]

Ref# | Block address | Hit or Miss | Cache block 0 | Cache block 1 | Cache block 2 | Cache block 3
1] Iliss Memory([(]

2 8 Miss Memory[0] Memory[8]

3] Hit Memoryv[(] Iemorv[8]

4 § Miss Memory[0] Memory[8] Memory([6]

3 8 Hit Memory[0] Memory[8] Memory[6]

An Implementation

3130---12111098---3210

Jd22 Jds

N N

Index V Tag Data V Tag Data V Tag Data V Tag Data

/
/

é-m mump.e@

Y

Hit Data

Performance

15% —
1 KB
12% —
2 KB
o 9%+
©
o 4 KB
= 6%
—se
3%- 16 KB T
32K8 5 ke | 128KB
O I I I I
One-way Two-way Four-way Eight-way

Associativity

Decreasing miss penalty with
multilevel caches

« Add a second level cache:
— often primary cache is on the same chip as the processor
— use SRAMs to add another cache above primary memory (DRAM)
— miss penalty goes down if data is in 2nd level cache

« Example:

— CPIl of 1.0 on a 5 Ghz machine with a 5% miss rate, 100ns DRAM
access

— Adding 2nd level cache with 5ns access time decreases miss rate to
5%

« Using multilevel caches:
— try and optimize the hit time on the 1st level cache
— try and optimize the miss rate on the 2nd level cache

Cache Complexities

Not always easy to understand implications of caches:

Instructions / item

1200

1000

800

600

400

200

0

T T U 1 T 1 T T T T
4 8 16 32 64 128 256 512 1024 2048 4096

Size (K items to sort)

Clock cycles / item

2000

1600

=

N

o

o
|

o)

o

o
|

i
o
o

o

T T U 1 T 1 T T T T
4 8 16 32 64 128 256 512 1024 2048 4096

Size (K items to sort)

Theoretical behavior of
Radix sort vs. Quicksort

Observed behavior of
Radix sort vs. Quicksort

Cache Complexities

* Hereis why:

Radix sort

Cache misses / item

14
Quicksort

T T U 1 T 1 T T T T
4 8 16 32 64 128 256 512 1024 2048 4096
Size (K items to sort)

* Memory system performance is often critical factor
— multilevel caches, pipelined processors, make it harder to predict outcomes
— Compiler optimizations to increase locality sometimes hurt ILP

 Difficult to predict best algorithm: need experimental data

