
Scrum and Agile Methods
in Software Engineering Courses

Jennifer Campbell
University of Toronto

campbell@cs.toronto.edu

Stan Kurkovsky
(moderator)

Central Connecticut State University
kurkovsky@ccsu.edu

Anya Tafliovich
University of Toronto

Scarborough
atafliovich@utsc.utoronto.ca

Chun Wai Liew
Lafayette College

liewc@lafayette.edu

Categories and Subject Descriptors
• Software and its engineering → Agile software development.
• Social and professional topics → Software engineering
education

Keywords
Scrum; Agile software development; Software engineering

1. SUMMARY
Agile software development has been formally introduced in 2001
in the “agile manifesto” [4]. Agile methods are best described as
an amalgamation of four core principles describing lightweight
iterative software processes:

 Individuals and interactions over processes and tools;
 Working software over comprehensive documentation;
 Customer collaboration over contract negotiation;
 Responding to change over following a plan.

Over the years, a number of agile frameworks, such as Extreme
Programming and Scrum, have evolved and matured. The
underlying philosophy of Scrum recognizes that the customers
often change their mind about the product they want and that the
development challenges are unpredictable by their nature.
Consequently, Scrum embraces the fact that the problem being
solved cannot be fully understood or described from the start.
Instead, Scrum focuses on maximizing the ability of the
development team to quickly deliver in response to emerging
requirements.

The aim of this panel is to present the experiences and challenges
of practicing Scrum and agile methods at a variety of computer
science programs.

2. OUR EXPERIENCE
This section describes the experience of each panelist (in
alphabetical order).

2.1 Jennifer Campbell
At the University of Toronto, we offer a second-year course [1] in

which we teach the fundamentals of software design and give
students an opportunity to apply what they are learning in
designing and developing Java and Android applications.
Students are also introduced to the basics of software engineering
and follow a prescribed Scrum-like software development process
as they complete a team project. Each semester, between 200 and
400 students enroll in this course.

The software development process involves an instructor
generated project feature set, multiple software design and
development phases, subsets of the feature set for each project
phase, planning meetings, status meetings, and post-phase peer-
and self-evaluations. These loosely correspond to key Scrum
elements including product backlog, sprints, sprint backlog, sprint
planning, daily scrums, and sprint retrospective. We introduce
students to a variety of software tools to support their project,
including version control (Subversion) and a fully featured IDE
(Android Studio). We also use the CATME web tool
(www.catme.org) for team formation and team member
evaluations.

For most students, this project is their first team software
development project and by introducing this Scrum-like process
we aim to keep the multi-week multi-phase team projects on
track. Exposing students to a software development process at this
stage of their academic program also allows us to foreshadow the
third-year software engineering course that involves an agile
software development project.

2.2 Stan Kurkovsky
At Central Connecticut State University students have at least two
opportunities to experience Scrum.

Students may choose to get an in-depth experience with Scrum in
a game development course, which is based on the book written
by one of our graduates [2]. Typically, students take this course
immediately after Data Structures and have a limited experience
with software development processes or working as a part of the
team. This course introduces students to the core principles of
Scrum using a broad range of agile games, some of which are
based on those from tastycupcakes.org. Students learn about the
Scrum roles; sprints and their planning, reviews, and
retrospectives; product backlog, user stories and their
prioritization.

A few weeks into the course, student teams are ready to begin
applying Scrum in a game development project lasting until the
end of the semester. The course is structured so that there is
enough time for at least three 2-week sprints. The instructor plays

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
SIGCSE'16, March 2–5, 2016, Memphis, TN, USA.
ACM ISBN: 978-1-4503-3685-7/16/03.
DOI: http://dx.doi.org/10.1145/2839509.2844664

319

the role of the Scrum Master with all sprint planning and review
meetings taking place during the class time in the second half of
the semester.

As a part of a required formal senior Software Engineering
course, all students in our program are introduced to Scrum in a 3-
hour long LEGO-based simulation [5], which prepares them for
an agile course project that focuses on short iterations with
evolving requirements.

2.3 Chun Wai Liew
At Lafayette College students take a second year course in which
we teach the fundamentals of software engineering and students
learn about the basic tools and techniques involved in developing
group projects [3]. This course serves two purposes in our
curriculum. Firstly, it teaches the students about the software
development tools that they will need in the upper level courses --
software repositories, time management/planning/scheduling
tools, weekly status and bug reporting tools. Secondly, they learn
the basics of the agile process - (1) repeated short iterations, (2)
unit testing from the beginning, (3) interleaving of specification
development, prototyping and design.

For our students, this is (a) their first group development project,
and (b) their first "medium-sized" project. They learn how to keep
the projects on track (most of the time) and also how to coordinate
their activities as a group. This experience allows us to have richer
projects in the upper level courses and also to offer a capstone
software engineering course with external clients.

We also have a second software engineering course (the capstone)
where students apply the scrum/agile methodology that they have
learned on a project with external (to the college) clients.

2.4 Anya Tafliovich
At the University of Toronto Scarborough, we have a sequence of
three courses that involve aspects of Agile software development,
to various degrees. The first in the sequence is a second-year
course described above. The students who complete this course
have had experience with a 6-7 weeks long team project, in which
they follow a fairly rigidly prescribed Scrum-like simplified
development process. They are familiar with the ideas of source
control (subversion), iterative development (prescribed project
phases), backlogs (feature lists for each phase, prescribed by the
instructor), and the different kinds of meetings involved.

The second course in the sequence is a third-year Introduction to
Software Engineering course. In this course the students are
introduced (in lecture) to all aspects of Agile development; we
look at Scrum and XP in detail. The course has a 10-week long
team project, in which the students have hands-on practice with
all aspects of Agile development. We do not follow either Scrum
or XP religiously, as we found this to be counter-productive in a
course setting. Instead, we have developed an Agile hybrid
process suitable for third-year computer science student teams, in
a large class (we expect over 20 teams in the coming term). We
bring in a real client, with a real need for software. The client is
non-technical (a member of a different department), which gives
the students practice with the challenges of requirements
gathering. The students practice writing user stories, producing
release plans and iteration plans, using state-of-the-art tools that

support Agile development (GitHub, online project management
tools, etc.), and following through with iterative development, re-
planning and re-estimation as needed, until the final product is
ready for the final presentation to the client at the end of the term.
Crucial to the success of the course are weekly deliverables and
weekly meetings with the team TA—these keep the projects on
track.

The third course in the sequence is a fourth-year course, in which
the student teams participate in a large open-source project hosted
on GitHub. If there is enough interest, we can elaborate on this
course and the use of Agile methods in it during the panel.

3. CHALLENGES
The panelists are also planning to have an open discussion
focusing on lessons learned, challenges, and their possible
solutions:

 Why should we teach Scrum/Agile?

 What are the biggest obstacles to adopting Scrum/Agile
in teaching Software Engineering?

 How to fit Scrum process into a class schedule? (daily
meetings are usually impossible)

 Who plays the roles of the Scrum Master and Product
Owner?

 Are two courses necessary to introduce Scrum/Agile?
Can the approach work if the students only have one
experience? What carries over from the first course to
the second?

 What aspects of the Scrum/Agile process are most
difficult for the students to master?

 Is there a difference in teaching Scrum/Agile to
first/second year students as opposed to fourth year
students?

4. REFERENCES
[1] Campbell, J. and Tafliovich, A. 2015. An experience report:

using mobile development to teach software design. In
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE '15). 506-511.

[2] Keith, C. 2010. Agile Game Development with Scrum.
Addison Wesley.

[3] Liew, C. W. 2005. Teaching software development skills
early in the curriculum through software engineering. In
Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education
(ITiCSE '05). ACM, New York, NY, USA, 133-137.

[4] Manifesto for Agile Software Development. 2001.
http://www.agilemanifesto.org/

[5] Paasivaara, M., Heikkilä, V., Lassenius, C. and Toivola, T.
2014. Teaching students scrum using LEGO blocks.
In Companion Proceedings of the 36th International
Conference on Software Engineering (ICSE ‘14). ACM, 382-
391.

320

