
0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 29

LIKE MANY PEOPLE, we’ve been
following closely the rapidly un-
folding story on the “defeat” soft-
ware at Germany’s giant automo-
tive company, VW. This, we believe,
adds a new dimension to our origi-
nal questions, “Software: What’s in
it and what’s it in?”1—particularly,
“What’s hidden in it, and how many
people knew?”

It would appear that aside from
the normal and burgeoning func-

tionality in the tens of millions of
lines of code embedded in modern
automotive systems,2 in some cases
there might be code intended to de-
ceive. The question is, when does a
feature cross the line from what law-
yers call harmless “advertiser’s puff”
to outright deceit?

The Defeat Device
In the case of VW, the change ap-
pears to have been tiny—just a few

lines of code in what’s likely to be
millions. Allegedly, the software
monitored steering movement while
the engine ran. On a test harness,
the car wheels move but the steer-
ing wheel doesn’t, unlike normal
running, in which both are continu-
ally in motion. By tracking this, the
software could detect when the car
was in test mode and therefore con-
trol the degree to which catalytic
scrubbing was done on the emis-
sions. Catalytic scrubbers inject a
mixture of urea and water into the
diesel engine emissions, converting
harmful nitrogen oxides into the
more benign molecules of nitrogen,
oxygen, water, and small amounts
of carbon dioxide. The trade-off in
a diesel engine is basically one of
emission toxicity against car perfor-
mance. The software, now known as
a “defeat device,” simply turned up
catalytic converters’ ef� ciency when
it thought the car was under test. It’s
believed to have been embedded in
approximately 11 million VWs and
two million Audis.

Pushing the Boundaries
This development is entirely pre-
dictable but nevertheless shocking,
although there’s a rich history of
such hardware and software frag-
ments in devices intended to push
the boundaries of what’s reasonable.
We recall hardware switches in early
computers that simply doubled the

Editor: Michiel van Genuchten
VitalHealth Software
genuchten@ieee.org

Editor: Les Hatton
Oakwood Computing Associates
lesh@oakcomp.co.uk

When Software
Crosses a Line
Les Hatton and Michiel van Genuchten

IMPACT

IMPACT

30 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

clock speed for a disproportionately
large fee. Similarly, there are possi-
bly apocryphal stories of software
wait loops intended to slow software
performance that could also be re-
moved for a suitable fee. However,
these weren’t intended to deceive,
although they might well be consid-
ered morally suspect.

Going beyond this, one of us had
experience in a legal case some years
ago in which a speci� c test case was
embedded in a software package
such that the software gave favorable
results for that test case during dem-
onstrations. However, those results
weren’t typical for that software. In-
deed, such a situation has raised its
head again, and there’s considerable
debate on the Web about the rigging
of Android benchmarks.3 Johann
Rost and Robert Glass explored the
Jekyll-and-Hyde nature of software
under a wider set of categories.4

Paying the Consequences
A cynical observer would claim that
if someone can get away with some-
thing, he or she will, but did the en-
gineers responsible really believe
that such a device would never be

found? Of course, unless you knew
what you were looking for, � nding it
by inspecting the code would be like
� nding a needle in a haystack. And,
even if you did know, � nding your
way round a giant software system
isn’t for the faint-hearted. Never-

theless, you can’t defeat the laws of
physics or, in this case, chemistry.

The VW defeat device was ba-
sically discovered by independent
monitoring of exhaust emissions that
found glaring differences between
what was observed in normal run-
ning and what was being claimed.
So, it seems naive to think the de-
vice wouldn’t have been discovered
eventually. Ironically, one of soft-
ware’s most important contributions
to automotive engineering has been
to reduce such noxious emissions by
continually retuning the engine as it
runs. By overstepping the mark, did
the engineers responsible think that
people wouldn’t mind or that the � -
nancial bene� t of selling more cars
would outweigh any potential down-
side? If they did, they’re likely in for
an unpleasant surprise, with VW
already setting aside several billion
dollars to deal with potential claims.

Software is an ideal medium for
this because, unlike other products,
its reproduction costs are zero. Only
a very small fraction of the millions
of diesels sold by VW end up on a
test bench, so putting a two-dollar
integrated circuit in every car for

the deceit would have cost a lot of
money. However, copying a few
lines of software into every car was
a cheap solution.

This is exactly why hackers and
spammers can do so much dam-
age. Spammers wouldn’t send out

a million emails if they had to pay
postage. Similarly, if thieves want
to cheat somebody at an ATM,
they have to go there (to put a fake
front on the card reader, observe
PIN entry, and so on) and run the
risk of exposing themselves. How-
ever, if they do the cheating via
phishing and emails, they can reach
thousands of users without leaving
their PC. Software can be turned
into a weapon of mass deceit very
cheaply, and we might need more
explicit governance and legislation
to at least discourage companies
and individuals from deploying
such software.

 As of October 2015, when we
wrote this, over one million cars
and vans might be affected in the
UK, Europe’s second-biggest diesel
user after Germany, but VW doesn’t
know. In fact, the company doesn’t
appear to know whether the soft-
ware is present or, if so, whether
it’s activated. VW will also have to
consider the possibility of breaking
something else in the process of re-
moving the software or even simply
deactivating it, owing to the possi-
bility of unintentional side effects.
These can occur through, for exam-
ple, shared global variables or one
of a number of mechanisms familiar
to professional software engineers.
In short, the software’s removal
could introduce one or more defects.

Perhaps the hardest thing to un-
derstand is that this allegedly is due
to a very small number of rogue en-
gineers. This is dif� cult to square
with the detailed obligations of re-
vision and speci� cation control for
systems that are often safety-related
and demand signi� cant oversight.
VW’s CEO has already lost his job,
but we have yet to hear what will
happen to the engineers responsible
and their respective managers.

Software can be turned into a
weapon of mass deceit very cheaply.

IMPACT

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 31

An Ethical Conundrum
Speaking of defects, let’s raise an
interesting question. Is this better
or worse than releasing automotive
software containing defects that
weren’t found in testing? One of the
more recent examples of this is Toy-
ota’s unintended-acceleration bug.5

Toyota isn’t alone; the automotive
industry has faced numerous recalls
due to software defects that in some
cases should have been found before
release. Only two months ago, Fiat
Chrysler had to recall 1.4 million
vehicles � tted with the touchscreen
Uconnect radios. A defect let profes-
sional hackers remotely take over an
unmodi� ed 2014 Jeep Cherokee and
perform alarming maneuvers, in-
cluding turning the engine off while
the car was driving by and, later in a
parking lot, reversing it into a ditch.6

When an automotive manufac-
turer releases such a defect while ad-
vertising how safe its cars are, is it
not being similarly misleading? Igno-
rance is no defense, but does the au-
tomotive industry in particular, and
many other industries in general,
rely too much on end users being
generally relaxed about software de-
fects, even if they might be unsafe?

For example, contrast the follow-
ing two more factually appropriate
statements that cover the previous
two eventualities:

We’ve adjusted the catalytic con-
verter to behave more ef� ciently if
you drive at a constant speed with-
out moving the steering wheel, so
your emissions will be much lower.
If you depart from this, as seems
very likely, you’ll get better perfor-
mance, but your emissions will be
very considerably more noxious.

We believe that software innovation
is vital in automotive development.

However, the systems we release to
you are so complicated that they’ll
quite possibly have defects in them
that might sometimes prejudice
your safety. However, we hope
that most of the time they won’t
and that the overall experience is
bene� cial to most drivers.

Would you still buy the car? You
could, of course, argue that these
statements arise from different ethi-
cal viewpoints. However, any soft-
ware engineer worth his or her salt
will know that the chances of releas-
ing a complicated defect-free soft-
ware system are effectively negligi-
ble.7 If, by some miracle, that system
was defect-free, the engineer would
never know it, would never be able
to prove it, and would never be able
to repeat such a feat systematically.

W e await the answers to
several obvious ques-
tions. Are any other

companies doing this, or—if we take
a more cynical standpoint—how
many are doing this? If they aren’t,
are they still using software practices
almost as dubious? How do we de-
cide what’s reasonable, given soft-
ware’s extraordinary ability to give
hardware its character?

References
 1. M. Genuchten and L. Hatton, “Soft-

ware: What’s In It and What’s It In?,”

IEEE Software, vol. 27, no. 1, 2010,

pp. 14–16.

 2. J. Mössinger, “Software in Automo-

tive Systems,” IEEE Software, vol.

27, no. 2, 2010, pp. 92–94.

 3. A. Lal Shimpi and B. Klug, “They’re

(Almost) All Dirty: The State of

Cheating in Android Benchmarks,” 2

Oct. 2013; www.anandtech.com

/show/7384/state-of-cheating-in

-android-benchmarks.

 4. J. Rost and R.L. Glass, The Dark

Side of Software Engineering: Evil

on Computing Projects, John Wiley

& Sons, 2011.

 5. D. Douglas and M.A. Fletcher,

“Toyota Reaches $1.2 Billion Settle-

ment to End Probe of Accelerator

Problems,” Washington Post, 19 Mar.

2014; www.washingtonpost.com

/business/economy/toyota-reaches

-12-billion-settlement-to-end

-criminal-probe/2014/03/19/5738a3c4

-af69-11e3-9627-c65021d6d572

_story.html.

 6. L.P. Vellequette, “Fiat Chrysler

Recalls 1.4 Million Vehicles to

Install Anti-Hacking Software,” Au-

tomotive News, 24 July 2015; www

.autonews.com/article/20150724

/OEM11/150729921/� at-chrysler

-recalls-1.4-million-vehicles-to

-install-anti-hacking.

 7. L. Hatton, “The Chimera of Software

Quality,” Computer, vol. 40, no. 8,

2007, pp. 104–107.

LES HATTON is emeritus professor of forensic

software engineering at Kingston University and

the managing director of Oakwood Computing

Associates. Contact him at lesh@oakcomp.co.uk.

MICHIEL VAN GENUCHTEN is the chief

operating of� cer at VitalHealth. Contact him at

genuchten@ieee.org.

NEXT ISSUE:

March/April 2016

Software Engineering
for Big Data Systems

