
Throw Down an AI Challenge

Todd W. Neller

Gettysburg College
Department of Computer Science
Gettysburg, Pennsylvania 17325

tneller@gettysburg.edu

Ingrid Russell

University of Hartford
Department of Computer Science
West Hartford, Connecticut 06117

irussell@hartford.edu

Zdravko Markov

Central Connecticut State University
Department of Computer Science
New Britain, Connecticut 06050

markovz@ccsu.edu

Abstract

Students will be more likely motivated to pursue a field of
study if they encounter relevant, exciting, and interesting
challenges early in their studies. The NSF CCLI project
“Machine Learning Laboratory Experiences for Introducing
Undergraduates to Artificial Intelligence” uses machine
learning as a unifying theme to teach diverse artificial
intelligence (AI) topics in the context of an introductory AI
course. In this paper, we extend our work to include
interesting AI challenges suitable for the context of
introductory CS1 and CS2 courses.

Introduction
In Dale Carnegie’s motivational classic How to Win
Friends & Influence People [1], the reader is urged to
“throw down a challenge”. Noting the work of behavioral
scientist Frederic Herzberg, he observes “The one major
factor that motivated people was the work itself. If the
work was exciting and interesting, the worker looked
forward to doing it and was motivated to do a good job.”
Applying such ideas to student enrollment, we propose that
a student will be more likely motivated to pursue a field of
study if they encounter relevant, exciting, and interesting
challenges early in their studies.

As instructors seek the ideally structured syllabus to
communicate foundational computer science concepts, it is
vital that student experiences include engaging challenges
that provide a sense of the problem-solving possibilities of
our discipline. A student may miss these possibilities
amidst unmotivated programming drills. As teachers, we
must ask ourselves, “Is this how I became a computer
scientist?” Very likely, we trace the beginning of our
enjoyment of the discipline not to a concept or
programming language, but to intriguing challenges and the
satisfaction of meeting those challenges.

AI instructors are immersed in some of the most exciting
and interesting challenges of the field. Robotics and games
are just two areas with demonstrable attraction for high-
school students and non-majors. Lego Mindstorms, Alice,

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Scratch1 provide good access to robotics, interactive
3D graphics, and interactive web applications, respectively.
One ongoing challenge is how to take representative
challenges from AI areas beyond robotics and make them
accessible at early stages of education.

In this paper, we describe a machine-learning themed
approach to teaching AI, related projects that have been
developed and deployed, and suggestions for introductory
computer science exercises related to each project.

Machine Learning Theme
It is believed by many faculty members that an introductory
AI course is challenging to teach because of the nature of
the diverse and seemingly disconnected topics that are
typically covered in the course [7]. A number of workshops
addressing the teaching of AI in the undergraduate
curriculum have been organized. Going back to 1994, a
symposium on Improving the Instruction of the
Introductory AI course, sponsored by the American
Association for Artificial Intelligence, was held in
November 1994 in New Orleans. More recent workshops
have addressed issues and challenges related to the teaching
of AI related courses and topics in the curriculum [2,5].
Recently, work has been done to address the diversity of
topics covered to create a theme-based approach. Russell
and Norvig present an agent-based approach [23]. A
number of instructors have been working to integrate
Robotics into the AI course [2,3,5,6,8,9].

Our approach, Machine Learning Laboratory Experiences
for Introducing Undergraduates to Artificial Intelligence
(MLExAI), incorporates machine learning as a unifying
theme across the different AI topics to address this problem
and to enhance student learning experiences in the
introductory AI course. Our work involves the
development, implementation, and testing of a suite of
projects that can be closely integrated into a one-term AI
course. MLExAI has several objectives:

1 http://mindstorms.lego.com/, http://www.alice.org/, and
http://scratch.mit.edu/, respectively.

• Enhance the student learning experience in the AI
course.

• Increase student interest and motivation to learn AI.
• Introduce students to an increasingly important

research area, thus motivating them to pursue further
study.

• Increase student interest and motivation to build AI
applications by allowing them to develop learning
systems where they can implement the various
concepts covered in the AI course.

To achieve these objectives, a suite of adaptable, hands-on
laboratory projects has been developed that can be closely
integrated into a one-term AI course. Using machine
learning as a unifying theme is an effective way to tie
together the various AI concepts while at the same time
emphasizing AI’s strong tie to computer science. We focus
on fundamental algorithms and knowledge representation.

Each project involves the design and implementation of a
learning system which enhances a particular commonly-
deployed AI application. In addition, the projects provide
students with an opportunity to address not only core AI
topics but also many of the issues central to computer
science, including algorithmic complexity and scalability
problems. The rich set of applications that students can
choose from spans several areas including recommender
systems, web document classification, pattern recognition,
data mining, and games. Studies have shown that the
choice of context or problem domain of assignments and
examples used in class can have a dramatic impact on
student motivation and in turn on the quality of their
learning [25]. A problem domain that a student relates to
and finds relevant leads to deeper understanding and hence
smoother transfer to other domains, something that
assessment of our work supported.

In the next section, we describe each of these six projects in
turn, and present additional relevant project suggestions
that are suitable for engaging students at an earlier stage of
study.

Projects
We have developed six hands-on laboratory projects that
can be closely integrated into a one-semester AI course.
Details on the various projects have been published in
[11,12,14,15,19,20]. Sample solutions along with support
code are also available to all instructors using the material.
Additional information and complete project descriptions
are available at the project web page at:
http://uhaweb.hartford.edu/compsci/ccli/index.htm. We
also here present relevant challenges suitable for
introductory courses in computer science.

Web User Profiling and Web Document
Classification
It is generally acknowledged that the web is the largest
collection of electronically accessible documents, which
make the richest source of information in the world. One
problem with the web is that this information is not well
structured and organized so that it could be easily retrieved.
Search engines help in accessing web documents by
keywords, but this is still far from what we need in order to
effectively use the knowledge available on the web.
Machine Learning and Data Mining approaches go further
and try to extract knowledge from raw data available on the
web by organizing web pages in well defined structures or
by looking into web user activity patterns.

These are the challenges that the web user profiling and the
web document classification projects address. The aim of
the first project is to allow students to build and experiment
with the basic components of an intelligent web browser
that can automatically adjust to the preferences of its user
by creating a machine learning model of these preferences
using data collected from web searches and user feedback.
The model is then used for improving the efficiency of new
web searches performed by the same or new users. The
web document classification project investigates the
process of classification of web pages according to their
topic. Known topic directory structures are used as training
data for machine learning algorithms which then create
models of document topics. These models can be further
applied to new web documents to determine their topic. In
this way, firstly the accuracy of the initial topic structure
can be evaluated and secondly, new web documents can be
classified into existing topics.

The web user profiling and the web document classification
projects allow students to explore and learn a number of
important AI related areas in a consistent way. Among
them are advanced search algorithms, information retrieval,
knowledge representation, and machine learning. All these
areas require students to apply basic Computer Science
methods and techniques such as sorting, searching,
indexing, and web programming, which are typically
covered in the introductory CS1 and CS2 courses. This in
turn allows these projects to be used as a framework for
teaching core CS topics in a more attractive and motivating
way.

Introductory Challenges. Both projects combine a
number of important areas related to the introductory CS1
and CS2 courses. Web search engines use various search
algorithms to explore the web graph and topic hierarchies
organize the web documents in tree structures. At the
document collection stage, students have the opportunity to
explore these areas. The project also involves manipulation
of various data structures and at some points (especially at
data collection and feature extraction) students are
encouraged to write code for this purpose. The Weka open

source provides an excellent opportunity for this. The
system comes with complete Java class documentation of
all algorithms and allows using parts of its code separately,
modifying or combining code to build stand-alone
applications.
The projects have three major stages - data collection,
feature extraction and machine learning. In the first two
stages, students explore and learn basic information
retrieval techniques. In the original projects we suggest that
for the implementations and experiments students use the
Weka system [24], one of the most popular machine
learning systems for educational purposes. By using the
Weka data preprocessing tools, (StringToWordVector
filter) students create the inverted index (term-document
matrix) where each document is a vector of Boolean or
numeric values representing the word (term) occurrences in
it. For this purpose, however, students can also implement
the algorithms on their own which can be a motivating
exercise well suited to the CS1 and CS2 courses. Below we
describe briefly the basic components of these algorithms,
each one of which can be also used as a separate
programming project in CS1 or CS2.

1. Creating a text corpus from a set of text or web
documents. For this purpose students have to implement an
algorithm for tokenizing text files into words (terms) and
filtering them by using a separate set of stopwords (short
words like, a, an, the, of, on etc., which are excluded from
keyword search because they usually occur in all
documents). An advanced extension to this project can be
adding a stemming algorithm that reduces each word to its
base form (stem). Stemming is common in information
retrieval and text processing and many stemming
algorithms are available (see for example, the IR resources
page at http://ir.exp.sis.pitt.edu/resources/).

2. Creating an index table (inverted index) that allows
documents to be retrieved by the words (terms) they
contain. The table also should include the frequency of
each term (the number of occurrences of the term in each
document). This step requires implementing sorting and
search algorithms (e.g. binary search), which are typically
covered in CS2.

3. Creating a term-document table (vector space model),
where each row corresponds to a document and each
column – to a term. Thus if there are m terms, each
document is represented by an m-component vector.
Depending on the type of the vector coordinates there are
three types of vector space models – Boolean, TF (Term
Frequency), and TFIDF (Term Frequency - Inverted
Document Frequency). Assume that term ti occurs in
document dj nij times. In the Boolean model, the
coordinates of vector dj are 0 (if nij = 0) or 1 (if nij > 0). In
the TF model, the ith coordinate of document dj is TF(i,j) =
log(1+nij/∑knkj), where the sum is for all terms in document
dj. In addition a coefficient IDF(i) is computed for each
term ti as IDF(i)=log((1+|D|)/|Di|), where Di is the set of

documents where term ti occurs and D is the whole
document collection. Thus, in the TFIDF framework, the ith
coordinate of document dj is the product TF(i,j)*IDF(i).
The IDF factor scales the coordinate values down for terms
that occur in many documents and up for rare terms
occurring in only few documents. In this way the TFIDF
transformation adjusts the document vector, stretching it or
shrinking it along some dimensions, according to the term
importance or relevance for the specific document also
taking into account the term distribution in the whole set of
documents.

4. Keyword search and document ranking. For this step,
students implement a keyword search engine. The query is
considered as a vector represented in the same format as the
document vectors (Boolean or TFIDF). Then the
documents are sorted by their closeness to the query vector
and a number of documents from the top of the list are
returned to the user. To implement such a system, students
have to use some basic methods from vector algebra such
as calculating norm, Euclidean distance, and dot product.
Firstly all vectors (including the query vector) are
normalized. Then the document vectors are sorted by
minimum Euclidean distance or maximum cosine similarity
to the query vector. The latter is mostly used in information
retrieval. The cosine similarity is the cosine of the angle
between the query vector q and the document vectors dj.
When the vectors are normalized this measure is equivalent
to the dot product q.dj = ∑iqidi

j Students can experiment
with different representations (Boolean, TF or TFIDF) and
different measures for closeness to the query vector and
then compare the results. This can provide them with
insights about how web search engines work and motivate
them to further study information retrieval and web search.
By working on this project, students practice their CS1
knowledge for implementing sorting and learn important
practical applications of computational mathematics.

The algorithms described above are used in all information
retrieval systems and web search engines and also form the
preprocessing phase in text and web document mining.
Student can read Chapter 1 of [10], which discusses these
methods and algorithms in detail and provides exercises
based on the Weka system [24]. By working on these
projects students will learn important CS methods and
algorithms and at the same time will explore modern AI
related applications which can motivate their greater
participation in Computer Science.

Character Recognition Using Neural Networks
The goal of this project is to develop a character
recognition system based on a neural network model. The
project introduces students to the basic neural network
concepts and to neural models and learning. Students
implement basic types of neural networks as well as some
important approaches to learning in order to solve a number

of typical pattern recognition problems. This allows
students to understand the role that neural networks play in
the more general context of AI techniques and tools.

In particular, students will (1) learn the basics of single-
layer neural networks and perceptron type models and their
use as pattern associators, (2) understand the limitations of
single-layer networks and the basic types of multilayer
networks as well as the backpropagation training algorithm,
(3) learn the mathematical foundations of the neural
network computation, (4) have a better understanding of
the nature of problems that neural networks can solve, (5)
gain experience in implementing neural network algorithms
for solving basic pattern recognition problems, and (6) have
a better understanding of the differences between the neural
network approach to solving AI problems and those based
on classical symbolic knowledge representation, search and
learning. The last part of the project provides opportunities
for further research for students seeking added challenges.

Introductory Challenge. A pattern associator is one of the
simpler neural network models. Students in a CS2 course
can write a program to simulate and test a pattern
associator. Such a project introduces students to the area of
neural networks and provides some insights to the
capabilities of such systems at an early stage in their
computer science studies, while at the same time
reinforcing introductory computer science concepts. Such
a project would require concepts typically covered in CS1
and hence could be assigned towards the end of CS1 or at
the beginning of CS2. We have written a neural networks
tutorial that is also available on line that can be assigned for
background material [16].

The architecture of a pattern associator consists of two
layers of units, the input layer and the output layer. The
activation aj of an output unit uj is given by: aj = ∑(wij*ai) ,
where ai is the activation of ui and wij is the weight of the
connection from ui to uj. A pattern associator is capable of
responding with a certain output given a set of input
patterns. More importantly, a pattern associator is able to
self-modify and learn; i.e., it is capable of modifying its
weights in order to learn a certain input/output association.
A learning rule determines how such changes in the
weights are to be accomplished. A commonly used
learning rule with the pattern associator is the Hebb rule.
According to the Hebb rule, the change in weight wij from
ui to uj is calculated as Δwij = r*ai*aj, where r is the
learning rule, and ai, aj are the activations of units ui and uj,
respectively. Students can implement a basic pattern
associator using the Hebb rule and study the performance
of the network. Specifically, an instructor can ask students
to train the network with various input/output associations
provided to the students and to explore and address the
following:

1. The effects of factors such as learning rate,
straight versus permuted training (randomly

selecting the order), and the number of training
iterations.

2. What combination of the above factors provides
reasonable performance? Use this combination for
training the network.

3. Use the best combination arrived at in (2) to test
the network’s performance using the training
patterns.

4. Test the network’s ability to generalize what it
learned about the training patterns to other similar
patterns and explain the results. One way would
be to ask students to test the performance of the
network when a linear combination of the training
patterns is presented.

While reinforcing concepts covered in CS1/CS2, these
exercises are aimed at providing a useful exposure to the
field of neural networks and artificial intelligence by
introducing a simply yet powerful neural network model,
the pattern associator. They point to directions of research
in an important area of study and highlight some of the
problem-solving capabilities of these systems. Details on
this and other similar introductory challenges can be found
in [17,18]. Project MLExAI material provides additional
challenges for students interested in further investigations
in this area.

Solving the N-Puzzle Problem
The N-puzzle game provides a good framework for
illustrating conceptual AI search in an interesting and
motivating way. Various uninformed and informed search
algorithms are usually applied in this setting and their
performance is evaluated. The objective of this project is to
introduce the student to Analytical (Explanation-Based)
Learning (EBL) using the classical AI framework of
search. Hands-on experiments with search algorithms
combined with an EBL component give the student a deep,
experiential understanding of the basics of EBL and the
role it plays in improving the performance of search
algorithms in particular and problem solving approaches in
general. Students seeking additional challenging are
provided with an opportunity to explore additional topics
through independent studies or research projects. [11]

Introductory Challenge. A classic problem, the N-puzzle
problem, serves as a good application for illustrating
conceptual AI search in a CS 2 course while teaching
several CS2 topics [21,22]. In the 8-puzzle version, a 3×3
board consists of 8 tiles numbered 1 through 8 and an
empty tile (marked as 0). One may move any tile into an
orthogonally adjacent empty square, but may not move
outside the board or diagonally. The problem is to find a
sequence of moves that transforms an initial board
configuration into a specified goal configuration.

The N-puzzle project can be divided into several parts
tackled by students in the following sequence:

• Implementation of a function which given a state
(current configuration) generates all new states
reachable from that state, and incorporation of that
function into a conceptual search program.

• Empirical study of uninformed search algorithms
(breadth-first, depth-first, depth-limited, iterative
deepening).

• Design and implementation of suitable heuristic
functions for the N-puzzle problem (number of
tiles in proper places and Manhattan distance
among them).

• Empirical study of performance of informed (best-
first) search with different heuristic functions.

• Comparison of performance of informed and
uninformed search.

Students can do various kinds of experimentation. They
may be asked to compare the performance of search
algorithms based on size of the search space, length of the
solution an algorithm returns, number of times an algorithm
backtracks, number of states examined, and elapsed time.
These exercises provide for an excellent complexity
analysis and illustrate the tradeoff between time efficiency,
space efficiency, and quality of the solution found. For
example, students discover how the depth-first search
memory requirement is less than for breadth-first search (its
space complexity is polynomial versus exponential space
complexity for the breadth-first search). On the other hand,
depth-first search can lead to a dead-end or continue
infinitely. In addition, it is not guaranteed to find a solution
even if one exists, and if it finds a solution, the solution is
not guaranteed to be optimal. However, the polynomial
space complexity of the depth-first search makes it a
practical choice in larger applications. Breadth-first search,
on the other hand, has a large memory requirement since it
requires the entire search space to be stored in memory.
However, it is guaranteed to find a solution that is nearest
to the initial state (the shortest path), if one exists.
Following these, related material from Project MLExAI can
be used to demonstrate to students how learning improves
the performance of search algorithms.

Solving the Dice Game Pig
The jeopardy dice game Pig is very simple to describe, yet
the optimal policy for play is far from trivial. The object of
Pig is to be the first player to reach 100 points. Each turn, a
player repeatedly rolls a die until either a 1 is rolled or the
player holds and scores the sum of the rolls. Using the
computation of Pig’s optimal roll/hold policy as a central
challenge problem, we give the student a deep, experiential
understanding of dynamic programming and value iteration

through explanation, implementation examples, and
implementation exercises.

Students first gain insight to optimal Pig play by a
documented Java dynamic programming solution to a
simple Pig variant with an acyclic state space. This is
followed by related dynamic programming exercises.
Students are then introduced to the reinforcement learning
technique of value iteration, which is demonstrated on a
simple coin variant of Pig called Piglet. They are then
ready to solve Pig and related games such as Pass the Pigs.
Advanced undergraduate research projects are suggested as
well.

Introductory Challenge: Pig Implementation. As the
simplest representative jeopardy dice game, Pig is
frequently used by mathematicians to teach introductory
concepts of probability [14]. In the same way, stepwise im-
plementation of Pig can be used to teach a variety of CS1
topics while illustrating bottom-up design with control
structures [14]. Consider one possible progression:

• Simulate a single Pig turn where the player holds
after rolling 20 or more points.

• Given the current score, simulate a turn where the
player additionally holds when the turn total is
enough for victory.

• Simulate an entire solitaire game with the same
policy.

• Extend this to a two-player game simulation.

• Replace one computer player with a human player,
so that the human player competes against this
policy.

Along the way, one can ask intriguing questions such as
“What is the distribution of outcomes for a ‘hold at 20’
turn?” or “What is the first player advantage for a ‘hold at
20 or goal’ game?”

Introductory Challenge: Pig Competition. There is no reason
that students must use a “hold at 20 or goal" automated
policy in the previous exercises. Indeed, a more intriguing
challenge would be to have students create competing
policies. Once students understand how to implement an
interface, a simple student Pig tournament can spark
significant creativity and encourage fun engagement.
Many instructors have observed that simple game
competitions have been amongst the most engaging,
memorable challenges for students.

The instructor should be aware that the only relevant
variables for roll/hold decisions are the player scores and
the current turn total. However, one could have students
design an interface that offers irrelevant information. For
example, students making use of the number of rolls so far
in a turn fall prey to the Gambler’s Fallacy. Such policy

experimentation is common in elementary education
exercises, but computer science students can more easily
test ideas through substantial simulation.

The relevant resources of our MLExAI project provide a
point of continuation for students interested in computing
optimal play.

The Game of Clue
The popular boardgame Clue (a.k.a. Cluedo) is the fun
focus problem for this introduction to propositional
knowledge representation and reasoning. Students first
learn the syntax and semantics of propositional logic,
general logic terminology (e.g. "model",
"(un)satisfiability", and "completeness"), conversion to
conjunctive normal form, and resolution theorem proving.
This is followed by an array of logical word problems to be
solved with and without the aid of a satisfiability solver
(e.g. zChaff).

Students are then introduced to the game of Clue and the
relevant game knowledge for propositional reasoning. This
culminates in the development of software that performs
perfect propositional reasoning about Clue game
knowledge. Several possible advanced projects are
sketched for students that wish to pursue the topic in more
depth. Finally, these concepts are tied into the machine
learning theme through a comparison of deductive learning,
inductive learning, and knowledge acquisition.

Introductory Challenge. A minimalist approach to
introducing knowledge representation and reasoning will
generally minimize either representation or reasoning
topics. Although the Clue project covers resolution
theorem proving, exercises are largely concerned with
knowledge representation. Students surveyed about their
experience with the project have expressed desire to create
their own solvers without the aid of a black-box
satisfiability solver.

Fortunately, it is not difficult to code simple propositional
reasoning engines. For example, a WalkSAT variant and a
set-of-support resolution theorem prover can each be
implemented in less than 100 lines of Java code. Given
word problems with their conjunctive normal form (CNF)
representations, a simple reasoning engine is a feasible
project for an introductory course.

One simple input format is a text file with one clause per
line, with each clause consisting one or more non-zero
integers. Each positive integer corresponds to an atomic
sentence (i.e. variable, proposition). A negative integer
denotes the corresponding negated atomic sentence. For
example consider the following problem: Ann says Bob
always lies. Bob says Cal always lies. Cal says Ann and
Bob always lie. Given that one always tells the truth or
always lies, who is lying? If atomic sentences claiming the

truthfulness of Ann, Bob, and Cal are numbered 1, 2, and 3
respectively, one CNF input file encoding would be:

-1 -2
1 2
-2 -3
2 3
-3 -1
-3 -2
3 1 2

By adding an atomic sentence or its negation and testing for
satisfiability, we can show there is a single valid model for
this problem. One simple satisfiability testing method is a
stochastic local search such as WalkSAT. However, a
simpler variant of WalkSAT suitable for introductory
courses is possible:

• Generate a random model
• Find all unsatisfied clauses for the model
• iterations = 0
• While there are unsatisfied clauses and iterations < max:

o Pick a random variable of a random unsatisfied
clause and negate it in the model

o Find all unsatisfied clauses for the new model
o If more clauses are unsatisfied then revert to the

previous model with high probability p
o iterations = iterations + 1

• Return whether or not clauses are still unsatisfied

Experimenting with parameters max and p, it is not difficult
to quickly and reliably test satisfiability for simple logic
problems. Before assigning this algorithm, the instructor
may use the Clue project documentation to explain
propositional logic basics, including CNF, models,
(un)satisfiability, modus ponens, and proof by
contradiction. If the instructor supplies CNF encodings of
word problems (e.g. those of the MLExAI project), training
representation and conversion to CNF is not necessary.
With this WalkSAT simplification, students also gain
experience with stochastic local search [13].

Conclusions
Introductory level AI challenges allow students to look
beyond the programming fundamentals to the engaging
challenges that lie beyond. However, such fundamentals
are important, so introductory AI challenges should have a
relatively low entry cost to be suitably accessible. With
this in mind, we have extended and presented here for the
first time a number of introductory AI projects we believe
will be significant, engaging introductory CS experiences
that point beyond the fundamentals, inviting students to
explore further challenges in our field.

The core projects we have referenced and extended
received positive evaluation, thus the NSF has funded
phase 2 of the CCLI project. Twenty faculty members are
currently adding to this repository of machine learning
laboratory experiences for introducing undergraduates to
AI.

Acknowledgments
This work is supported in part by NSF grant DUE CCLI-
A&I Award Number 0409497.

References
[1] Carnegie, Dale, How to Win Friends and Influence People,

revised ed., Simon & Shuster, New York, NY, 1981.
[2] Dodds, Z. et al. (eds.), Special Issue on Robots and Robotics

in Undergraduate AI Education, AI Magazine, 27(1), AAAI
Press, 2006.

[3] Fox, S., Artificial Intelligence and Robotics Lab,
http://www.macalester.edu/research/fox/.

[4] Fox, S., Introductory AI for Both Computer Science and
Neuroscience Students, In Proceedings of the 20th
International FLAIRS Conference (FLAIRS-2007), AAAI
Press, May 2007.

[5] Greenwald, L. et al (eds.), Accessible Hands-on Artificial
Intelligence and Robotics Education, AAAI Press Technical
Report SS-04-01, March 2004.

[6] Harlan, R., Levine, D., and McClarigan, S., The Khepera
Robot and the kRobot Class, in Proceedings of the 32nd
SIGCSE technical symposium on Computer Science
Education, ACM Press, New York, NY, February 2001, 105-
109. DOI= http://doi.acm.org/10.1145/364447.364553

[7] Hearst, M. (ed), Improving Instruction of Introductory
Artificial Intelligence, Technical Report FS-94-05, AAAI
Press, 1995.

[8] Kumar, A., Kumar, D., and Russell, I., Non-Traditional
Projects in the Undergraduate AI Course. In Proceedings of
the 37th Annual SIGCSE Technical Symposium on Computer
Science Education, ACM Press, March 2006. DOI=
http://doi.acm.org/10.1145/1121341.1121491.

[9] Kumar, D., and Meeden, L., A Robot Laboratory for
Teaching Artificial Intelligence, In Proceedings of the 29th
SIGCSE Technical Symposium on Computer Science
Education, ACM Press, New York, NY, 1998, 341-344.
DOI= http://doi.acm.org/10.1145/273133.274326.

[10] Markov, Z. and Larose, D. T., Data Mining the Web:
Uncovering Patterns in Web Content, Structure, and Usage,
Wiley, 2007.

[11] Markov, Z., Russell, I., Neller, T., and Zlatareva, N.,
Pedagogical Possibilities for the N-Puzzle Problem, in
Proceedings of the 36th Frontiers in Education Conference,
IEEE Press, November 2006.

[12] Markov, Z., Russell, I., Neller, T., and Coleman, S.,
Enhancing Undergraduate AI Courses through Machine
Learning Projects, In Proceedings of the 35th Frontiers in
Education Conference, IEEE Press, October 2005.

[13] Neller, T., Teaching Stochastic Local Search, in I. Russell
and Z. Markov, eds. Proceedings of the 18th International
FLAIRS Conference (FLAIRS-2005), Clearwater Beach,
Florida, May 15-17, 2005, AAAI Press, pp. 8-13.

[14] Neller, T., Russell, I., Presser, C., and Markov, Z.,
Pedagogical Possibilities for the Dice Game Pig, Journal of
Computing Sciences in Colleges, 21(5), April 2006.

[15] Neller, T., Markov, Z., and Russell, I., Clue Deduction:
Professor Plum Teaches Logic, In Proceedings of the 19th
International FLAIRS Conference (FLAIRS-2006), AAAI
Press, May 2006.

[16] Russell, I., Neural Networks: Theory and Applications,
Journal of Undergraduate Mathematics and its Applications
(UMAP), January 1993.

[17] Russell, I., A Neural Network Simulation Project, Journal of
Artificial Intelligence in Education, February, 1992, Vol. 3,
No. 1.

[18] Russell, I., Neural Networks in the Undergraduate Curriculum,
Journal of Computing in Small Colleges, April 1991, Vol. 6,
No. 4, April 1

[19] Russell, I., Markov, Z., Neller, T., Georgiopoulos, M., and
Coleman, S., Unifying Undergraduate AI Courses through
Machine Learning Projects, in Proceedings of the 25th
American Society for Engineering Education Conference,
June 2005. DOI=
http://doi.acm.org/10.1145/1140124.1140230

[20] Russell, I., Markov, Z., and Neller, T., Teaching AI through
Machine Learning Projects, in Proceedings of the 11th
Annual Conference on Innovation and Technology in
Computer Science Education, ACM Press, June 2006. DOI=
http://doi.acm.org/10.1145/1140124.1140230

[21] Russell, I., Markov, Z., and Zlatareva, N., Introducing
Machine Learning from an AI Perspective”, Proceedings of
the 13th International Conference on Artificial Neural
Networks, June 2003.

[22] Russell, I. and Neller, T., Implementing the Intelligent
Systems Knowledge Units of Computing Curricula 2001, In
Proceedings of Frontiers in Education Conference, Boulder,
Colorado, November 5-8, 2003, IEEE Press.

[23] Russell, S. J. and Norvig, P., Artificial Intelligence: a
modern approach, Upper Saddle River, NJ: Prentice-Hall,
2nd ed., 2003.

[24] Witten, I. H. and Frank, E., Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed., Morgan Kaufmann,
2005.

[25] Wilensky, U., Abstract Meditations on the Concrete and
Concrete Implications for Mathematics Eductation. In Harel,
I. and Papert S. (eds.), Constructionism, Ablex: Norwood,
NJ, 1991, 193-203

