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Abstract 

Students will be more likely motivated to pursue a field of 
study if they encounter relevant, exciting, and interesting 
challenges early in their studies.  The NSF CCLI project 
“Machine Learning Laboratory Experiences for Introducing 
Undergraduates to Artificial Intelligence” uses machine 
learning as a unifying theme to teach diverse artificial 
intelligence (AI) topics in the context of an introductory AI 
course.  In this paper, we extend our work to include 
interesting AI challenges suitable for the context of 
introductory CS1 and CS2 courses. 

Introduction   
In Dale Carnegie’s motivational classic How to Win 
Friends & Influence People [1], the reader is urged to 
“throw down a challenge”.  Noting the work of behavioral 
scientist Frederic Herzberg, he observes “The one major 
factor that motivated people was the work itself.  If the 
work was exciting and interesting, the worker looked 
forward to doing it and was motivated to do a good job.”  
Applying such ideas to student enrollment, we propose that 
a student will be more likely motivated to pursue a field of 
study if they encounter relevant, exciting, and interesting 
challenges early in their studies. 

As instructors seek the ideally structured syllabus to 
communicate foundational computer science concepts, it is 
vital that student experiences include engaging challenges 
that provide a sense of the problem-solving possibilities of 
our discipline.  A student may miss these possibilities 
amidst unmotivated programming drills. As teachers, we 
must ask ourselves, “Is this how I became a computer 
scientist?”  Very likely, we trace the beginning of our 
enjoyment of the discipline not to a concept or 
programming language, but to intriguing challenges and the 
satisfaction of meeting those challenges. 

AI instructors are immersed in some of the most exciting 
and interesting challenges of the field.  Robotics and games 
are just two areas with demonstrable attraction for high-
school students and non-majors.  Lego Mindstorms, Alice, 
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and Scratch1 provide good access to robotics, interactive 
3D graphics, and interactive web applications, respectively.  
One ongoing challenge is how to take representative 
challenges from AI areas beyond robotics and make them 
accessible at early stages of education. 

In this paper, we describe a machine-learning themed 
approach to teaching AI, related projects that have been 
developed and deployed, and suggestions for introductory 
computer science exercises related to each project. 

Machine Learning Theme 
It is believed by many faculty members that an introductory 
AI course is challenging to teach because of the nature of 
the diverse and seemingly disconnected topics that are 
typically covered in the course [7]. A number of workshops 
addressing the teaching of AI in the undergraduate 
curriculum have been organized.  Going back to 1994, a 
symposium on Improving the Instruction of the 
Introductory AI course, sponsored by the American 
Association for Artificial Intelligence, was held in 
November 1994 in New Orleans.  More recent workshops 
have addressed issues and challenges related to the teaching 
of AI related courses and topics in the curriculum [2,5].  
Recently, work has been done to address the diversity of 
topics covered to create a theme-based approach.  Russell 
and Norvig present an agent-based approach [23].  A 
number of instructors have been working to integrate 
Robotics into the AI course [2,3,5,6,8,9].   

Our approach, Machine Learning Laboratory Experiences 
for Introducing Undergraduates to Artificial Intelligence 
(MLExAI), incorporates machine learning as a unifying 
theme across the different AI topics to address this problem 
and to enhance student learning experiences in the 
introductory AI course.    Our work involves the 
development, implementation, and testing of a suite of 
projects that can be closely integrated into a one-term AI 
course.  MLExAI has several objectives: 
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• Enhance the student learning experience in the AI 
course. 

• Increase student interest and motivation to learn AI.  
• Introduce students to an increasingly important 

research area, thus motivating them to pursue further 
study. 

• Increase student interest and motivation to build AI 
applications by allowing them to develop learning 
systems where they can implement the various 
concepts covered in the AI course. 

To achieve these objectives, a suite of adaptable, hands-on 
laboratory projects has been developed that can be closely 
integrated into a one-term AI course.  Using machine 
learning as a unifying theme is an effective way to tie 
together the various AI concepts while at the same time 
emphasizing AI’s strong tie to computer science.  We focus 
on fundamental algorithms and knowledge representation. 

Each project involves the design and implementation of a 
learning system which enhances a particular commonly-
deployed AI application.  In addition, the projects provide 
students with an opportunity to address not only core AI 
topics but also many of the issues central to computer 
science, including algorithmic complexity and scalability 
problems.  The rich set of applications that students can 
choose from spans several areas including recommender 
systems, web document classification, pattern recognition, 
data mining, and games.  Studies have shown that the 
choice of context or problem domain of assignments and 
examples used in class can have a dramatic impact on 
student motivation and in turn on the quality of their 
learning [25].  A problem domain that a student relates to 
and finds relevant leads to deeper understanding and hence 
smoother transfer to other domains, something that 
assessment of our work supported. 

In the next section, we describe each of these six projects in 
turn, and present additional relevant project suggestions 
that are suitable for engaging students at an earlier stage of 
study. 

Projects 
We have developed six hands-on laboratory projects that 
can be closely integrated into a one-semester AI course.  
Details on the various projects have been published in 
[11,12,14,15,19,20].  Sample solutions along with support 
code are also available to all instructors using the material.  
Additional information and complete project descriptions 
are available at the project web page at: 
http://uhaweb.hartford.edu/compsci/ccli/index.htm.  We 
also here present relevant challenges suitable for 
introductory courses in computer science. 

Web User Profiling and Web Document 
Classification 
It is generally acknowledged that the web is the largest 
collection of electronically accessible documents, which 
make the richest source of information in the world. One 
problem with the web is that this information is not well 
structured and organized so that it could be easily retrieved. 
Search engines help in accessing web documents by 
keywords, but this is still far from what we need in order to 
effectively use the knowledge available on the web. 
Machine Learning and Data Mining approaches go further 
and try to extract knowledge from raw data available on the 
web by organizing web pages in well defined structures or 
by looking into web user activity patterns.  

These are the challenges that the web user profiling and the 
web document classification projects address. The aim of 
the first project is to allow students to build and experiment 
with the basic components of an intelligent web browser 
that can automatically adjust to the preferences of its user 
by creating a machine learning model of these preferences 
using data collected from web searches and user feedback. 
The model is then used for improving the efficiency of new 
web searches performed by the same or new users. The 
web document classification project investigates the 
process of classification of web pages according to their 
topic. Known topic directory structures are used as training 
data for machine learning algorithms which then create 
models of document topics. These models can be further 
applied to new web documents to determine their topic. In 
this way, firstly the accuracy of the initial topic structure 
can be evaluated and secondly, new web documents can be 
classified into existing topics. 

The web user profiling and the web document classification 
projects allow students to explore and learn a number of 
important AI related areas in a consistent way. Among 
them are advanced search algorithms, information retrieval, 
knowledge representation, and machine learning. All these 
areas require students to apply basic Computer Science 
methods and techniques such as sorting, searching, 
indexing, and web programming, which are typically 
covered in the introductory CS1 and CS2 courses. This in 
turn allows these projects to be used as a framework for 
teaching core CS topics in a more attractive and motivating 
way. 

Introductory Challenges.  Both projects combine a 
number of important areas related to the introductory CS1 
and CS2 courses. Web search engines use various search 
algorithms to explore the web graph and topic hierarchies 
organize the web documents in tree structures. At the 
document collection stage, students have the opportunity to 
explore these areas. The project also involves manipulation 
of various data structures and at some points (especially at 
data collection and feature extraction) students are 
encouraged to write code for this purpose. The Weka open 



source provides an excellent opportunity for this. The 
system comes with complete Java class documentation of 
all algorithms and allows using parts of its code separately, 
modifying or combining code to build stand-alone 
applications. 
The projects have three major stages - data collection, 
feature extraction and machine learning. In the first two 
stages, students explore and learn basic information 
retrieval techniques. In the original projects we suggest that 
for the implementations and experiments students use the 
Weka system [24], one of the most popular machine 
learning systems for educational purposes. By using the 
Weka data preprocessing tools, (StringToWordVector 
filter) students create the inverted index (term-document 
matrix) where each document is a vector of Boolean or 
numeric values representing the word (term) occurrences in 
it. For this purpose, however, students can also implement 
the algorithms on their own which can be a motivating 
exercise well suited to the CS1 and CS2 courses. Below we 
describe briefly the basic components of these algorithms, 
each one of which can be also used as a separate 
programming project in CS1 or CS2. 

1. Creating a text corpus from a set of text or web 
documents. For this purpose students have to implement an 
algorithm for tokenizing text files into words (terms) and 
filtering them by using a separate set of stopwords (short 
words like, a, an, the, of, on etc., which are excluded from 
keyword search because they usually occur in all 
documents).  An advanced extension to this project can be 
adding a stemming algorithm that reduces each word to its 
base form (stem). Stemming is common in information 
retrieval and text processing and many stemming 
algorithms are available (see for example, the IR resources 
page at http://ir.exp.sis.pitt.edu/resources/). 

2. Creating an index table (inverted index) that allows 
documents to be retrieved by the words (terms) they 
contain. The table also should include the frequency of 
each term (the number of occurrences of the term in each 
document). This step requires implementing sorting and 
search algorithms (e.g. binary search), which are typically 
covered in CS2.  

3. Creating a term-document table (vector space model), 
where each row corresponds to a document and each 
column – to a term. Thus if there are m terms, each 
document is represented by an m-component vector. 
Depending on the type of the vector coordinates there are 
three types of vector space models – Boolean, TF (Term 
Frequency), and TFIDF (Term Frequency -  Inverted 
Document Frequency).  Assume that term ti occurs in 
document dj nij times. In the Boolean model, the 
coordinates of vector dj are 0 (if nij = 0) or 1 (if nij > 0). In 
the TF model, the ith coordinate of document dj is TF(i,j) = 
log(1+nij/∑knkj), where the sum is for all terms in document 
dj. In addition a coefficient IDF(i) is computed for each 
term ti as IDF(i)=log((1+|D|)/|Di|), where Di is the set of 

documents where term ti occurs and D is the whole 
document collection. Thus, in the TFIDF framework, the ith 
coordinate of document dj is the product TF(i,j)*IDF(i). 
The IDF factor scales the coordinate values down for terms 
that occur in many documents and up for rare terms 
occurring in only few documents. In this way the TFIDF 
transformation adjusts the document vector, stretching it or 
shrinking it along some dimensions, according to the term 
importance or relevance for the specific document also 
taking into account the term distribution in the whole set of 
documents. 

4. Keyword search and document ranking. For this step, 
students implement a keyword search engine. The query is 
considered as a vector represented in the same format as the 
document vectors (Boolean or TFIDF). Then the 
documents are sorted by their closeness to the query vector 
and a number of documents from the top of the list are 
returned to the user. To implement such a system, students 
have to use some basic methods from vector algebra such 
as calculating norm, Euclidean distance, and dot product. 
Firstly all vectors (including the query vector) are 
normalized. Then the document vectors are sorted by 
minimum Euclidean distance or maximum cosine similarity 
to the query vector. The latter is mostly used in information 
retrieval. The cosine similarity is the cosine of the angle 
between the query vector q and the document vectors dj. 
When the vectors are normalized this measure is equivalent 
to the dot product q.dj = ∑iqidi

j Students can experiment 
with different representations (Boolean, TF or TFIDF) and 
different measures for closeness to the query vector and 
then compare the results. This can provide them with 
insights about how web search engines work and motivate 
them to further study information retrieval and web search. 
By working on this project, students practice their CS1 
knowledge for implementing sorting and learn important 
practical applications of computational mathematics. 

The algorithms described above are used in all information 
retrieval systems and web search engines and also form the 
preprocessing phase in text and web document mining. 
Student can read Chapter 1 of [10], which discusses these 
methods and algorithms in detail and provides exercises 
based on the Weka system [24]. By working on these 
projects students will learn important CS methods and 
algorithms and at the same time will explore modern AI 
related applications which can motivate their greater 
participation in Computer Science.  

Character Recognition Using Neural Networks 
The goal of this project is to develop a character 
recognition system based on a neural network model. The 
project introduces students to the basic neural network 
concepts and to neural models and learning.  Students 
implement basic types of neural networks as well as some 
important approaches to learning in order to solve a number 



of typical pattern recognition problems.   This allows 
students to understand the role that neural networks play in 
the more general context of AI techniques and tools.   

In particular, students will (1) learn the basics of single-
layer neural networks and perceptron type models and their 
use as pattern associators, (2) understand the limitations of 
single-layer networks and  the basic types of multilayer 
networks as well as the backpropagation training algorithm, 
(3) learn the mathematical foundations of the neural 
network computation, (4) have a better understanding of 
the nature of problems that neural networks can solve, (5) 
gain experience in implementing neural network algorithms 
for solving basic pattern recognition problems, and (6) have 
a better understanding of the differences between the neural 
network approach to solving AI problems and those based 
on classical symbolic knowledge representation, search and 
learning. The last part of the project provides opportunities 
for further research for students seeking added challenges. 

Introductory Challenge.  A pattern associator is one of the 
simpler neural network models.  Students in a CS2 course 
can write a program to simulate and test a pattern 
associator.  Such a project introduces students to the area of 
neural networks and provides some insights to the 
capabilities of such systems at an early stage in their 
computer science studies, while at the same time 
reinforcing introductory computer science concepts.  Such 
a project would require concepts typically covered in CS1 
and hence could be assigned towards the end of CS1 or at 
the beginning of CS2.  We have written a neural networks 
tutorial that is also available on line that can be assigned for 
background material [16].  
  
The architecture of a pattern associator consists of two 
layers of units, the input layer and the output layer.   The 
activation aj of an output unit uj is given by:  aj = ∑(wij*ai) , 
where ai is the activation of ui and wij is the weight of the 
connection from ui to uj.   A pattern associator is capable of 
responding with a certain output given a set of input 
patterns.  More importantly, a pattern associator is able to 
self-modify and learn; i.e., it is capable of modifying its 
weights in order to learn a certain input/output association.  
A learning rule determines how such changes in the 
weights are to be accomplished.  A commonly used 
learning rule with the pattern associator is the Hebb rule.  
According to the Hebb rule, the change in weight wij from 
ui to uj is calculated as Δwij = r*ai*aj, where r is the 
learning rule, and ai, aj are the activations of units ui and uj, 
respectively.  Students can implement a basic pattern 
associator using the Hebb rule and study the performance 
of the network.  Specifically, an instructor can ask students 
to train the network with various input/output associations 
provided to the students and to explore and address the 
following: 

1. The effects of factors such as learning rate, 
straight versus permuted training (randomly 

selecting the order), and the number of training 
iterations.  

2. What combination of the above factors provides 
reasonable performance? Use this combination for 
training the network. 

3. Use the best combination arrived at in (2) to test 
the network’s performance using the training 
patterns. 

4. Test the network’s ability to generalize what it 
learned about the training patterns to other similar 
patterns and explain the results.  One way would 
be to ask students to test the performance of the 
network when a linear combination of the training 
patterns is presented.   

While reinforcing concepts covered in CS1/CS2, these 
exercises are aimed at providing a useful exposure to the 
field of neural networks and artificial intelligence by 
introducing a simply yet powerful neural network model, 
the pattern associator.  They point to directions of research 
in an important area of study and highlight some of the 
problem-solving capabilities of these systems.  Details on 
this and other similar introductory challenges can be found 
in [17,18].  Project MLExAI material provides additional 
challenges for students interested in further investigations 
in this area.   

Solving the N-Puzzle Problem 
The N-puzzle game provides a good framework for 
illustrating conceptual AI search in an interesting and 
motivating way. Various uninformed and informed search 
algorithms are usually applied in this setting and their 
performance is evaluated. The objective of this project is to 
introduce the student to Analytical (Explanation-Based) 
Learning (EBL) using the classical AI framework of 
search. Hands-on experiments with search algorithms 
combined with an EBL component give the student a deep, 
experiential understanding of the basics of EBL and the 
role it plays in improving the performance of search 
algorithms in particular and problem solving approaches in 
general.  Students seeking additional challenging are 
provided with an opportunity to explore additional topics 
through independent studies or research projects. [11] 

Introductory Challenge.  A classic problem, the N-puzzle 
problem, serves as a good application for illustrating 
conceptual AI search in a CS 2 course while teaching 
several CS2 topics [21,22].   In the 8-puzzle version, a 3×3 
board consists of 8 tiles numbered 1 through 8 and an 
empty tile (marked as 0).  One may move any tile into an 
orthogonally adjacent empty square, but may not move 
outside the board or diagonally.  The problem is to find a 
sequence of moves that transforms an initial board 
configuration into a specified goal configuration.    



The N-puzzle project can be divided into several parts 
tackled by students in the following sequence: 

• Implementation of a function which given a state 
(current configuration) generates all new states 
reachable from that state, and incorporation of that 
function into a conceptual search program. 

• Empirical study of uninformed search algorithms 
(breadth-first, depth-first, depth-limited, iterative 
deepening). 

• Design and implementation of suitable heuristic 
functions for the N-puzzle problem (number of 
tiles in proper places and Manhattan distance 
among them). 

• Empirical study of performance of informed (best-
first) search with different heuristic functions. 

• Comparison of performance of informed and 
uninformed search. 

Students can do various kinds of experimentation.  They 
may be asked to compare the performance of search 
algorithms based on size of the search space, length of the 
solution an algorithm returns, number of times an algorithm 
backtracks, number of states examined, and elapsed time.  
These exercises provide for an excellent complexity 
analysis and illustrate the tradeoff between time efficiency, 
space efficiency, and quality of the solution found.  For 
example, students discover how the depth-first search 
memory requirement is less than for breadth-first search (its 
space complexity is polynomial versus exponential space 
complexity for the breadth-first search). On the other hand, 
depth-first search can lead to a dead-end or continue 
infinitely.  In addition, it is not guaranteed to find a solution 
even if one exists, and if it finds a solution, the solution is 
not guaranteed to be optimal.  However, the polynomial 
space complexity of the depth-first search makes it a 
practical choice in larger applications. Breadth-first search, 
on the other hand, has a large memory requirement since it 
requires the entire search space to be stored in memory.  
However, it is guaranteed to find a solution that is nearest 
to the initial state (the shortest path), if one exists.  
Following these, related material from Project MLExAI can 
be used to demonstrate to students how learning improves 
the performance of search algorithms.  

Solving the Dice Game Pig 
The jeopardy dice game Pig is very simple to describe, yet 
the optimal policy for play is far from trivial.  The object of 
Pig is to be the first player to reach 100 points. Each turn, a 
player repeatedly rolls a die until either a 1 is rolled or the 
player holds and scores the sum of the rolls.  Using the 
computation of Pig’s optimal roll/hold policy as a central 
challenge problem, we give the student a deep, experiential 
understanding of dynamic programming and value iteration 

through explanation, implementation examples, and 
implementation exercises.   

Students first gain insight to optimal Pig play by a 
documented Java dynamic programming solution to a 
simple Pig variant with an acyclic state space.  This is 
followed by related dynamic programming exercises.  
Students are then introduced to the reinforcement learning 
technique of value iteration, which is demonstrated on a 
simple coin variant of Pig called Piglet.  They are then 
ready to solve Pig and related games such as Pass the Pigs.  
Advanced undergraduate research projects are suggested as 
well. 

Introductory Challenge: Pig Implementation.  As the 
simplest representative jeopardy dice game, Pig is 
frequently used by mathematicians to teach introductory 
concepts of probability [14].  In the same way, stepwise im-
plementation of Pig can be used to teach a variety of CS1 
topics while illustrating bottom-up design with control 
structures [14].  Consider one possible progression: 

• Simulate a single Pig turn where the player holds 
after rolling 20 or more points. 

• Given the current score, simulate a turn where the 
player additionally holds when the turn total is 
enough for victory. 

• Simulate an entire solitaire game with the same 
policy. 

• Extend this to a two-player game simulation. 

• Replace one computer player with a human player, 
so that the human player competes against this 
policy. 

Along the way, one can ask intriguing questions such as 
“What is the distribution of outcomes for a ‘hold at 20’ 
turn?” or “What is the first player advantage for a ‘hold at 
20 or goal’ game?”   

Introductory Challenge: Pig Competition.  There is no reason 
that students must use a “hold at 20 or goal" automated 
policy in the previous exercises.  Indeed, a more intriguing 
challenge would be to have students create competing 
policies.  Once students understand how to implement an 
interface, a simple student Pig tournament can spark 
significant creativity and encourage fun engagement.  
Many instructors have observed that simple game 
competitions have been amongst the most engaging, 
memorable challenges for students. 

The instructor should be aware that the only relevant 
variables for roll/hold decisions are the player scores and 
the current turn total.  However, one could have students 
design an interface that offers irrelevant information.  For 
example, students making use of the number of rolls so far 
in a turn fall prey to the Gambler’s Fallacy.  Such policy 



experimentation is common in elementary education 
exercises, but computer science students can more easily 
test ideas through substantial simulation.  

The relevant resources of our MLExAI project provide a 
point of continuation for students interested in computing 
optimal play. 

The Game of Clue 
The popular boardgame Clue (a.k.a. Cluedo) is the fun 
focus problem for this introduction to propositional 
knowledge representation and reasoning.  Students first 
learn the syntax and semantics of propositional logic, 
general logic terminology (e.g. "model", 
"(un)satisfiability", and "completeness"), conversion to 
conjunctive normal form, and resolution theorem proving.  
This is followed by an array of logical word problems to be 
solved with and without the aid of a satisfiability solver 
(e.g. zChaff).  

Students are then introduced to the game of Clue and the 
relevant game knowledge for propositional reasoning.  This 
culminates in the development of software that performs 
perfect propositional reasoning about Clue game 
knowledge.  Several possible advanced projects are 
sketched for students that wish to pursue the topic in more 
depth.  Finally, these concepts are tied into the machine 
learning theme through a comparison of deductive learning, 
inductive learning, and knowledge acquisition. 

Introductory Challenge.  A minimalist approach to 
introducing knowledge representation and reasoning will 
generally minimize either representation or reasoning 
topics.  Although the Clue project covers resolution 
theorem proving, exercises are largely concerned with 
knowledge representation.  Students surveyed about their 
experience with the project have expressed desire to create 
their own solvers without the aid of a black-box 
satisfiability solver. 

Fortunately, it is not difficult to code simple propositional 
reasoning engines.  For example, a WalkSAT variant and a 
set-of-support resolution theorem prover can each be 
implemented in less than 100 lines of Java code.  Given 
word problems with their conjunctive normal form (CNF) 
representations, a simple reasoning engine is a feasible 
project for an introductory course. 

One simple input format is a text file with one clause per 
line, with each clause consisting one or more non-zero 
integers.  Each positive integer corresponds to an atomic 
sentence (i.e. variable, proposition).  A negative integer 
denotes the corresponding negated atomic sentence.  For 
example consider the following problem: Ann says Bob 
always lies.  Bob says Cal always lies.  Cal says Ann and 
Bob always lie.  Given that one always tells the truth or 
always lies, who is lying?  If atomic sentences claiming the 

truthfulness of Ann, Bob, and Cal are numbered 1, 2, and 3 
respectively, one CNF input file encoding would be: 

-1 -2 
1 2 
-2 -3 
2 3 
-3 -1 
-3 -2 
3 1 2 

By adding an atomic sentence or its negation and testing for 
satisfiability, we can show there is a single valid model for 
this problem.  One simple satisfiability testing method is a 
stochastic local search such as WalkSAT.  However, a 
simpler variant of WalkSAT suitable for introductory 
courses is possible: 

• Generate a random model 
• Find all unsatisfied clauses for the model 
• iterations = 0 
• While there are unsatisfied clauses and iterations < max: 

o Pick a random variable of a random unsatisfied 
clause and negate it in the model 

o Find all unsatisfied clauses for the new model 
o If more clauses are unsatisfied then revert to the 

previous model with high probability p 
o iterations = iterations + 1 

• Return whether or not clauses are still unsatisfied 

Experimenting with parameters max and p, it is not difficult 
to quickly and reliably test satisfiability for simple logic 
problems.  Before assigning this algorithm, the instructor 
may use the Clue project documentation to explain 
propositional logic basics, including CNF, models, 
(un)satisfiability, modus ponens, and proof by 
contradiction.  If the instructor supplies CNF encodings of 
word problems (e.g. those of the MLExAI project), training 
representation and conversion to CNF is not necessary.  
With this WalkSAT simplification, students also gain 
experience with stochastic local search [13]. 

Conclusions 
Introductory level AI challenges allow students to look 
beyond the programming fundamentals to the engaging 
challenges that lie beyond.  However, such fundamentals 
are important, so introductory AI challenges should have a 
relatively low entry cost to be suitably accessible.  With 
this in mind, we have extended and presented here for the 
first time a number of introductory AI projects we believe 
will be significant, engaging introductory CS experiences 
that point beyond the fundamentals, inviting students to 
explore further challenges in our field. 

The core projects we have referenced and extended 
received positive evaluation, thus the NSF has funded 
phase 2 of the CCLI project.  Twenty faculty members are 
currently adding to this repository of machine learning 
laboratory experiences for introducing undergraduates to 
AI. 
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