
MDL-Based Hierarchical Clustering

Zdravko Markov
Computer Science Department

Central Connecticut State University
New Britain, CT, USA

markovz@ccsu.edu

Abstract—This paper presents a new hierarchical clustering
algorithm based on the use of the Minimum Description
Length (MDL) principle. The clusters are created by
recursively splitting the data using the values of an attribute
(similarly to decision tree learning), so that each cluster
contains the instances that have the same value for this
attribute. Attributes are chosen to minimize the MDL
evaluation measure of the clustering they create. The
algorithm’s computational complexity is linear in the number
of data instances and quadratic in the total number of different
attribute-values in the data and can be substantially reduced
by an efficient implementation using bit-level parallelism. We
empirically evaluate the algorithm on 20 datasets from the UCI
ML repository and show that it compares favorably to k-means
and EM.

Keywords—clustering; minimum description length
principle;

I. INTRODUCTION
To assess clustering various criteria are used. Criterion

functions are also used in the implementation of clustering
algorithms for guiding the search for possible clusterings. In
this paper we explore this approach. Our algorithm creates
possible clusterings by choosing an attribute and splitting the
data using the values of this attribute, i.e. each cluster
contains the instances that have the same value for that
attribute. This approach is similar to the divide-and-conquer
approach taken by the supervised decision tree learning
algorithms. To choose the attribute we use the unsupervised
attribute ranking scheme based on the Minimum Description
Length (MDL) principle described in [12]. Hereafter we
describe an efficient algorithm for computing the MDL
evaluation measure, empirically evaluate the clustering
algorithm on numeric, nominal and mixed data, and compare
its performance with that of two traditional clustering
algorithms, k-means and EM.

II. RELATED WORK
Our approach to clustering is related to three areas –

attribute selection, MDL principle, and decision tree
learning. The attribute selection method we use falls in the
framework of wrapper approaches, which evaluate the
attributes by the quality of clustering obtained by using these
attributes. Reference [4] uses the category utility function
and the Cobweb clustering algorithm for this purpose.
Reference [5] explores the EM framework and uses the
scatter separability and maximum likelihood evaluation

functions to find proper subsets of attributes. Another group
of methods use information-based measures. A method
called entropy reduction is proposed in [3]. It measures the
entropy in data based on a normalized distance between pairs
of instances and evaluates attributes by the reduction of the
entropy when the attribute is removed from data. This and
other methods are empirically evaluated for the purposes of
text clustering in [10]. Our approach is similar in spirit to the
one described in [13], which uses an information
compression measure to create clusters with highly similar
features and selects a feature from each cluster.

As we use MDL, our approach may be traced back to the
classical work [15]. It uses MDL to select the attributes that
partition the dataset during the process of creating a decision
tree, however in the presence of class labels. There are
clustering approaches that use MDL for clustering model
evaluation. These approaches differ in the specific MDL
encoding scheme and in the way clusters are generated. In
[8] MDL is used to evaluate grouping of data items that can
be compressed well together, so that the total code length
over all data groups is optimized. Thus an efficient
compression indicates underlying regularities that are
common to all members of a group, which in turn may be
used as a similarity metric for the purposes of clustering. In
[9] a distance based clustering technique using MDL for
evaluating clusters is proposed. Our approach also uses MDL
for model evaluation; however it creates clusters by using the
divide-and-conquer technique of decision tree learning.

The third related area we discuss is decision tree learning.
Our algorithm employs the TDIDT framework used by
Quinlan in his classical ID3 algorithm [14] and by others to
create classification trees. Classification trees may be also
regarded as concept hierarchies. Langley [11] discusses the
similarity between classification trees and clustering trees
created by hierarchical clustering algorithms such as
COBWEB. This similarity is also noted in [6]. A more recent
work [2] further explores these ideas and proposes an
algorithm for top-down induction of clustering trees. The
algorithm called TIC uses a first-order logical representation
of clusters, where the nodes (tests) are conjunctions of
literals and the leaves contain sets of examples that belong
together. The criterion for splitting nodes is based on a
distance measure that is used to select the test that maximizes
the distance between the resulting clusters. Our algorithm is
similar to the algorithms for building clustering trees in that
it uses a measure of clustering quality to choose the best
split.

� Dx
xk

∈
=

Function MDL-Cluster(D)
1. Choose attribute)(minarg ii AMDLA =

2. Let A take values nxxx ,...,, 21

3. Split data �n

i iCD
1=

= , where }|{ XxXC ii ∈=

4. If cAMDLDL <−)()(then stop. Return D
5. For each ni ,...,1= Call MDL-Cluster(Ci)

III. MDL-BASED CLUSTERING MODEL EVALUATION
Consider an information theory setting for encoding (or

communicating) a dataset D with the shortest message using
the attribute-value description language. Assume that there
are m attributes and k different attribute-value pairs that
occur in D, i.e. xm = and , where x is a data
instance. Encoding D means encoding each instance x∈D,
which in turn means choosing a subset of m attribute-value
pairs out of k possible ones. Assuming that data are
uniformly distributed, the probability of this choice is

��
�

�
��
�

�
=

m
k

xp 1)(

According to information theory the minimal code length (in
bits) of the message about the occurrence of instance x in
data is

 ��
�

�
��
�

�
=−=

m
k

xpxL 22 log)(log)(.

To get the minimal code length of the data we multiply the
minimal code length of x by the number of instances, i.e.

 ��
�

�
��
�

�
×=

m
k

DDL 2log)(.

Let us consider a clustering of the data into n clusters
D=C1 ∪ C2 ∪… ∪ Cn. This clustering may be viewed as an
alternative description of the data, a hypothesis H. According
to the Minimum Description Length (MDL) principle [16]
the best hypothesis should minimize the code length of the
data described by the hypothesis. Formally, this means
minimizing the sum of the code length of the hypothesis
itself and the code length of the data given the hypothesis,
i.e. L(H)+L(D|H), or maximizing the difference L(D)–L(H)–
L(D|H), called Information Compression.

Assuming that there are ki attribute-value pairs in each
cluster Ci, we represent the minimal code length of H as

)log(log)(2
1

2 n
k
k

HL
n

i i

+��
�

�
��
�

�
= �

=

.

The term in the sum represents the number of bits needed
to encode the description language for each cluster (choosing
ki out of k attribute-value pairs) and the cluster label
(choosing one out of n cluster labels). Once we
communicated the hypothesis, encoding each cluster comes
to encoding each instance in Ci. Using the same reasoning as
for computing L(D) and summing up over all clusters we
represent the code length of the data given the hypothesis as

�
=

��
�

�
��
�

�
=

n

i

i
i m

k
CHDL

1
2log)|(.

Thus MDL of H (clustering C1 ∪ C2 ∪… ∪ Cn) is

)()...(
1

21 �
=

=∪∪∪
n

i
in CMDLCCCMDL , where

��
==

��
�

�
��
�

�
��
�

�
��
�

�
++��

�

�
��
�

�
=

n

i

i
i

i

n

i
i m

k
Cn

k
k

CMDL
1

222
1

logloglog)(. (1)

IV. MDL-CLUSTER ALGORITHM
The algorithm (shown in Fig. 1) chooses an attribute A,

which produces a data split that minimizes MDL and then
recursively applies the same procedure to the resulting splits.
The MDL of the split (denoted MDL(A)) is computed using
(1), where each cluster Ci contains the instances that have the
same value for that attribute. For nominal attributes the
number of splits is equal to the number of attribute values.
The numeric attributes are discretized into two intervals by
choosing a breakpoint value. All their values are first ordered
(excluding repetitions) and each one is considered as a
possible breakpoint, then the breakpoint that minimizes the
MDL score of the resulting data split is chosen. For attributes
with too many values an equal-interval binning is applied
first. The width of the interval h is computed by using the
Scott’s method as

3/1

5.3
n

h σ= , where n is the number of values

and σ – the standard deviation. The process of growing the
clustering tree is controlled by a parameter evaluating the
information compression at each node, computed as the
difference between the code length of the data at that node
and the MDL of the data split produced by the selected
attribute. If the compression drops bellow a specified cutoff
value (parameter c) the process of growing the tree stops and
a leaf node is created.

Figure 1. MDL-Cluster algorithm (c is the compression cutoff).

The MDL-Cluster algorithm is implemented as an
extension of the Weka package [7] and is available at
http://www.cs.ccsu.edu/~markov/MDLclustering/. Below is
its output produced from the soybean-small dataset (UCI ML
repository [1]). This dataset is also included in the empirical
evaluation (Section VI). The clustering perfectly matches the
known classes (the numbers in square brackets show the
class distribution followed by the majority class label).

> java MDLcluster data/soybean-small.arff 150
stem-cankers=0 (51.15) [0,10,0,0] D2
stem-cankers=1 (153.77)
 canker-lesion=1 (78.09) [0,0,10,0] D3
 canker-lesion=2 (42.95) [0,0,0,8] D4
stem-cankers=2 (53.56) [0,0,0,9] D4
stem-cankers=3 (46.84) [10,0,0,0] D1

This example also illustrates how the cutoff value may be
chosen. The cluster stem-cankers=1 has substantially higher
MDL (153.77) than the other three clusters at the same level,
which indicates that it may be further split to produce a
better compression at its subclusters. Thus a cutoff value of
150 (specified in the command line) splits that cluster, but
keeps the other two because their compression is lower.

V. EFFICIENT COMPUTATION OF MDL
The key part of computing MDL is finding the

parameters ki, as the other parameters involved, k, m and n,
can be determined before processing the actual data
instances. The approach we take is based on the so-called
attribute-value matrix ijA . It’s a square binary matrix kk ×
(k is the total number of attribute-value pairs in the data),
initialized with 0’s and processed as follows. Each data
instance is represented as a binary vector),...,,(21 kxxx ,
where each of its components xi corresponds to an attribute
value. If that value is present in the instance xi=1, otherwise
xi=0. For each instance vector Dxxx k ∈),...,,(21 and each of
its non-zero components (xi=1) the ith row of the matrix
is OR-ed with the instance vector, i.e.

),...,,(),...,,(),...,,(212121 kikiiikii xxxAAAAAA ∨= . In this way
when all instances are processed the number of 1’s in the ith
row of the matrix represents the number of attribute-values ki
in cluster Ci, i.e. � =

= k

j iji Ak
1

.

The computational complexity of the algorithm is O(nk2),
where n is the number of instances and k – the number of
attribute-value pairs in data. Since the basic operation
performed k2 times is a one-bit OR, bit-level parallel
implementations may substantially reduce its computational
complexity. A simple use of a bitwise OR operation reduces
this term by a factor of 32 or 64 (depending on the processor
architecture). Another advantage is that the algorithm does
not require storing the instances in the memory as they are
processed one at a time. The Java implementation of the
algorithm that we ran on a 3GHz Intel-based PC processed
the largest dataset from Table I (reuters-3class) in 9 seconds.

VI. EMPIRICAL EVALUATION
We evaluated our clustering algorithm on 20 datasets

from the UCI ML repository [1], listed in Table I. We
selected pure nominal, pure numeric and mixed datasets with
various number of attributes, instances and classes (given in
parentheses after the name of the dataset). The pure nominal
and mixed datasets were binarized (indicated with the suffix
“–bin”) and also used for evaluation. The original reuters
dataset was used to create reuters-2class and reuters-3class
datasets by including the instances from the two and three
largest classes correspondingly. The MDL-Cluster algorithm
was compared with the k-means and EM algorithms as
implemented in the Weka system [7]. The latter were run
with their default parameters and number of clusters set to
the known number of classes. To minimize their dependence
on the initial clustering we ran them 10 times with different
random number seeds and the clustering, which maximized
the classification accuracy, was used for comparison. The
MDL-Cluster compression cutoff parameter was adjusted in
order to obtain a clustering tree with number of leaves equal
(or close to) the known number of classes. Then the leaf
clusters were used for comparison. Three evaluation metrics
were used – classification accuracy, log-likelihood, and
holdout log-likelihood. Table I shows the results.

The classification accuracy is computed as the
proportion of instances from the majority class in the clusters
(classes-to-clusters evaluation in Weka). This measure
depends on whether the class labels are assigned consistently
with the underlying patterns in the data and is an indication
of the quality of the dataset (for example, the 1.00 accuracy
of the soybean-small dataset means that its labeling perfectly
matches the underlying patterns in the data). We used this
measure to see whether MDL-Cluster is consistent with the
best known and widely used classical clustering algorithms,
which was confirmed by the experimental results.

The log-likelihood function estimates the overall
likelihood that the data come from a distribution
corresponding to the given clustering and is defined as

�� ==
= n

j jji
m

i
CPCxPL

11
)()|(log ,

where xi are instances and Cj – clusters. The experiments
showed that according to this criterion MDL-Cluster
performed comparably on all datasets and on 12 datasets
performed better or equally well than k-means and EM.

The holdout log-likelihood is a criterion for the entire
model of clustering as it reflects its ability to predict new
data. It is computed by randomly splitting the original data
into a training set (66%) and a test set (34%) and then
calculating the log-likelihood function on the test set
clustered with the clustering model produced from the
training set. According to this criterion MDL-Cluster
performed comparably or better (on 11 datasets) than k-
means and EM.

Our algorithm provides better classification accuracy
than k-means and EM on all binary datasets and higher log-
likelihood scores on almost all of them. Also, with binary
data the algorithm creates more balanced clustering trees
thus avoiding the problem with highly branching attributes,
which are often selected by the MDL evaluation metric.

An important advantage of MDL-Cluster is that the
models it creates are explicitly described by attribute values
and in case of deeper trees have internal structure, which
makes them easy to understand and use. For example, the
tree produced from the reuters-3class dataset has three
clusters and identifies the two most important attributes in
the data as shown in the output below.
> java MDLcluster eval/reuters-3class.arff 280000
trade=0 (584469.05)
 rate=0 (277543.73) [339,18,30] money
 rate=1 (259602.51) [168,0,177] interest
trade=1 (206999.39) [101,301,12] trade

If we are interested in the structure of these clusters we may
lower the compression threshold to 250000 and obtain the
following tree.
> java MDLcluster eval/reuters-3class.arff 250000
trade=0 (584469.05)
 rate=0 (277543.73)
 mln=0 (160192.77) [178,10,28] money
 mln=1 (129134.46) [161,8,2] money
 rate=1 (259602.51)
 market=0 (117196.81) [66,0,117] interest
 market=1 (107679.77) [102,0,60] money
trade=1 (206999.39) [101,301,12] trade

This clustering indicates another important attribute (market)
that splits the “interest” cluster in two. It also provides higher
classification accuracy (0.74). The tree is very similar to the

one produced by the Weka’s J48 algorithm, which shows
that the MDL evaluation measure can identify the important
attributes in the data without using class information.

TABLE I. DATA SETS AND EXPERIMENTAL RESULTS.

Dataset
(nominal+numeric,
instances/classes)

Classification Accuracy Log-likelihood Holdout Log-likelihood

k-means EM MDL k-means EM MDL k-means EM MDL
anneal (32+6, 898/5) 0.54 0.64 0.77 -21.82 -21.36 -23.25 -20.57 -20.95 -22.69
anneal-bin (64+6, 898/5) 0.57 0.60 0.84 -25.21 -25.57 -25.06 -24.71 -25.14 -24.25
australian (9+6, 690/2) 0.83 0.74 0.66 -20.83 -20.89 -22.42 -19.20 -18.57 -21.70
australian-bin (36+6, 690/2) 0.58 0.56 0.63 -17.27 -19.17 -18.66 -16.05 -17.55 -18.58
breast (0+9, 699/2) 0.96 0.94 0.92 -13.50 -12.68 -13.22 -13.22 -12.23 -12.81
ecoli (0+7, 336/8) 0.74 0.83 0.73 -18.48 -18.40 -18.49 -18.15 -18.25 -18.24
german (13+7, 1000/2) 0.65 0.64 0.70 -30.56 -29.78 -29.89 -29.55 -29.11 -29.18
german-bin (52+7, 1000/2) 0.64 0.59 0.70 -39.50 -39.69 -39.28 -39.20 -39.38 -39.02
heart (0+13, 270/2) 0.80 0.81 0.62 -26.05 -26.16 -26.55 -25.60 -25.72 -26.01
iris (0+4, 150/3) 0.89 0.91 0.82 -10.71 -10.70 -10.81 -9.97 -9.95 -10.17
lymph (15+3, 148/4) 0.53 0.74 0.62 -13.67 -13.47 -14.28 -13.44 -13.22 -14.07
lymph-bin (35/3, 148/4) 0.57 0.67 0.71 -18.48 -19.37 -18.35 -21.26 -19.88 -19.64
reuters-2class (2886+0, 927/2) 0.76 0.72 0.87 -205.81 -203.35 -205.95 -210.97 -208.17 -203.45
reuters-3class (2886+0, 1146/3) 0.60 0.61 0.71 -206.10 -191.84 -197.05 -201.55 -194.19 -200.10
segment (0+19, 2310/7) 0.67 0.62 0.57 -79.34 -75.02 -79.08 -76.09 -71.30 -76.00
soybean-small (35+0, 47/4) 1.00 1.00 1.00 -10.79 -10.79 -10.71 -11.81 -11.81 12.00
soybean-small-bin (45+0, 47/4) 1.00 1.00 1.00 -14.96 -14.96 -14.96 -16.26 -16.26 -16.26
soybean (35+0, 683/19) 0.55 0.69 0.58 -14.84 -13.84 -17.08 -15.82 -14.29 -17.37
soybean-bin (83+0, 683/19) 0.55 0.64 0.70 -21.39 -21.12 -20.80 -23.30 -21.70 -21.53
vehicle (0+18, 846/4) 0.38 0.37 0.43 -55.55 -56.09 -55.55 -55.29 -54.96 -54.48

VII. CONCLUSION

In this paper, we described an MDL-based measure that
evaluates clustering quality and presented an algorithm that
uses this measure for clustering. We evaluated our algorithm
on benchmark datasets and showed that it compares
favorably to two traditional clustering algorithms, k-means
and EM. The empirical study also showed that the algorithm
performs well with binary and sparse data, which are typical
in text data mining. Furthermore, it is a hierarchical model-
based clustering algorithm that provides structural
information about the clusters in human understandable
form. Our future work will be aimed at improving its
efficiency by parallel implementations and applying it to
large text and web datasets.

REFERENCES
[1] Bache, K. and Lichman, M. UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science, 2013.

[2] Blockeel, H., De Raedt, L., Ramon, J. Top-down induction of
clustering trees, Shavlik, Jude (ed.), Proceedings of the 15th
International Conference on Machine Learning (ICML-98), Madison,
Wisconsin, USA, July 24-27, 1998, pp. 55-63, Morgan Kaufmann.

[3] Dash, M. and Liu, H. Feature selection for clustering. Proceedings of
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
2000, pp. 110–121.

[4] Devaney, M. and Ram, A. Efficient Feature Selection in Conceptual
Clustering, Proceedings of the 14th International Conference on
Machine Learning (ICML-97), pp. 92-97, Nashville, 1997, Morgan
Kaufmann.

[5] Dy, J. G. and Brodley, C. E. Feature Selection for Unsupervised
Learning. Journal of Machine Learning Research 5: 845-889, 2004.

[6] Fisher, D., and Hapanyengwi, G. Database Management and Analysis
Tools of Machine Learning, Journal of Intelligent Information
Systems, 2, 1993, pp. 5-38.

[7] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H. The WEKA Data Mining Software: An Update,
SIGKDD Explorations, Volume 11, Issue 1, 2009.

[8] Kontkanen, P., Myllymaki, P., Buntine, W., Rissanen, J, and Tirri, H.
An MDL framework for Data Clustering, in Grünwald, P., Myung, J.
and Pitt, M. (Eds.), Advances in Minimum Description Length:
Theory and Applications, MIT Press, 2005.

[9] Lai, P. H., O’Sullivan, J. A. and Pless, R. Proceedings of the 2009
IEEE International Symposium on Information Theory (ISIT), IEEE
Press, Piscataway, NJ, USA, pp. 1318-1322, 2009.

[10] Liu, T., Liu, S., Chen, Z., and Ma, W. An Evaluation on Feature
Selection for Text Clustering. Proceedings of the 12th International
Conference on Machine Learning (ICML-2003), 488-495,
Washington DC, 2003.

[11] Langley, P. Elements of Machine Learning. Morgan Kaufmann,
1996.

[12] Markov, Z. MDL-based Unsupervised Attribute Ranking,
Proceedings of the 26th International Florida Artificial Intelligence
Research Society Conference (FLAIRS-26), St. Pete Beach, Florida,
USA, May 22-24, 2013, AAAI Press 2013, pp. 444-449.

[13] Mitra, P., C. Murthy, C., and Pal S. Unsupervised feature selection
using feature similarity, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(3):301-312, 2002.

[14] Quinlan, J. R. Induction of Decision Trees. Machine Learning 1(1):
81-106, 1986.

[15] Quinlan, J. R. and Rivest, R. Inferring Decision Trees Using the
Minimum Description Length Principle, Information and
Computation, Vol. 80, 1989, 227 - 248.

[16] Rissanen, J. Modeling by shortest data description. Automatica,
14:465–471, 1978.

