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Abstract—This paper presents a new hierarchical clustering 
algorithm based on the use of the Minimum Description 
Length (MDL) principle. The clusters are created by 
recursively splitting the data using the values of an attribute 
(similarly to decision tree learning), so that each cluster 
contains the instances that have the same value for this 
attribute. Attributes are chosen to minimize the MDL 
evaluation measure of the clustering they create. The 
algorithm’s computational complexity is linear in the number 
of data instances and quadratic in the total number of different 
attribute-values in the data and can be substantially reduced 
by an efficient implementation using bit-level parallelism. We 
empirically evaluate the algorithm on 20 datasets from the UCI 
ML repository and show that it compares favorably to k-means 
and EM. 
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I. INTRODUCTION 
To assess clustering various criteria are used. Criterion 

functions are also used in the implementation of clustering 
algorithms for guiding the search for possible clusterings. In 
this paper we explore this approach. Our algorithm creates 
possible clusterings by choosing an attribute and splitting the 
data using the values of this attribute, i.e. each cluster 
contains the instances that have the same value for that 
attribute. This approach is similar to the divide-and-conquer 
approach taken by the supervised decision tree learning 
algorithms. To choose the attribute we use the unsupervised 
attribute ranking scheme based on the Minimum Description 
Length (MDL) principle described in [12]. Hereafter we 
describe an efficient algorithm for computing the MDL 
evaluation measure, empirically evaluate the clustering 
algorithm on numeric, nominal and mixed data, and compare 
its performance with that of two traditional clustering 
algorithms, k-means and EM. 

II. RELATED WORK 
Our approach to clustering is related to three areas – 

attribute selection, MDL principle, and decision tree 
learning. The attribute selection method we use falls in the 
framework of wrapper approaches, which evaluate the 
attributes by the quality of clustering obtained by using these 
attributes. Reference [4] uses the category utility function 
and the Cobweb clustering algorithm for this purpose. 
Reference [5] explores the EM framework and uses the 
scatter separability and maximum likelihood evaluation 

functions to find proper subsets of attributes. Another group 
of methods use information-based measures. A method 
called entropy reduction is proposed in [3]. It measures the 
entropy in data based on a normalized distance between pairs 
of instances and evaluates attributes by the reduction of the 
entropy when the attribute is removed from data. This and 
other methods are empirically evaluated for the purposes of 
text clustering in [10]. Our approach is similar in spirit to the 
one described in [13], which uses an information 
compression measure to create clusters with highly similar 
features and selects a feature from each cluster. 

As we use MDL, our approach may be traced back to the 
classical work [15]. It uses MDL to select the attributes that 
partition the dataset during the process of creating a decision 
tree, however in the presence of class labels. There are 
clustering approaches that use MDL for clustering model 
evaluation. These approaches differ in the specific MDL 
encoding scheme and in the way clusters are generated. In 
[8] MDL is used to evaluate grouping of data items that can 
be compressed well together, so that the total code length 
over all data groups is optimized. Thus an efficient 
compression indicates underlying regularities that are 
common to all members of a group, which in turn may be 
used as a similarity metric for the purposes of clustering. In 
[9] a distance based clustering technique using MDL for 
evaluating clusters is proposed. Our approach also uses MDL 
for model evaluation; however it creates clusters by using the 
divide-and-conquer technique of decision tree learning. 

The third related area we discuss is decision tree learning. 
Our algorithm employs the TDIDT framework used by 
Quinlan in his classical ID3 algorithm [14] and by others to 
create classification trees. Classification trees may be also 
regarded as concept hierarchies. Langley [11] discusses the 
similarity between classification trees and clustering trees 
created by hierarchical clustering algorithms such as 
COBWEB. This similarity is also noted in [6]. A more recent 
work [2] further explores these ideas and proposes an 
algorithm for top-down induction of clustering trees. The 
algorithm called TIC uses a first-order logical representation 
of clusters, where the nodes (tests) are conjunctions of 
literals and the leaves contain sets of examples that belong 
together. The criterion for splitting nodes is based on a 
distance measure that is used to select the test that maximizes 
the distance between the resulting clusters. Our algorithm is 
similar to the algorithms for building clustering trees in that 
it uses a measure of clustering quality to choose the best 
split. 
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III. MDL-BASED CLUSTERING MODEL EVALUATION 
Consider an information theory setting for encoding (or 

communicating) a dataset D with the shortest message using 
the attribute-value description language. Assume that there 
are m attributes and k different attribute-value pairs that 
occur in D, i.e. xm =  and       , where x is a data 
instance. Encoding D means encoding each instance x∈D, 
which in turn means choosing a subset of m attribute-value 
pairs out of k possible ones. Assuming that data are 
uniformly distributed, the probability of this choice is 

��
�

�
��
�

�
=

m
k

xp 1)(
  

According to information theory the minimal code length (in 
bits) of the message about the occurrence of instance x in 
data is  
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To get the minimal code length of the data we multiply the 
minimal code length of x by the number of instances, i.e.  

 ��
�

�
��
�

�
×=

m
k

DDL 2log)( . 

Let us consider a clustering of the data into n clusters 
D=C1 ∪ C2 ∪… ∪ Cn. This clustering may be viewed as an 
alternative description of the data, a hypothesis H. According 
to the Minimum Description Length (MDL) principle [16] 
the best hypothesis should minimize the code length of the 
data described by the hypothesis. Formally, this means 
minimizing the sum of the code length of the hypothesis 
itself and the code length of the data given the hypothesis, 
i.e. L(H)+L(D|H), or maximizing the difference L(D)–L(H)–
L(D|H), called Information Compression. 

Assuming that there are ki attribute-value pairs in each 
cluster Ci, we represent the minimal code length of H as 
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The term in the sum represents the number of bits needed 
to encode the description language for each cluster (choosing 
ki out of k attribute-value pairs) and the cluster label 
(choosing one out of n cluster labels). Once we 
communicated the hypothesis, encoding each cluster comes 
to encoding each instance in Ci. Using the same reasoning as 
for computing L(D) and summing up over all clusters we 
represent the code length of the data given the hypothesis as 
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Thus MDL of H (clustering C1 ∪ C2 ∪… ∪ Cn) is  
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IV. MDL-CLUSTER ALGORITHM 
The algorithm (shown in Fig. 1) chooses an attribute A, 

which produces a data split that minimizes MDL and then 
recursively applies the same procedure to the resulting splits. 
The MDL of the split (denoted MDL(A)) is computed using  
(1), where each cluster Ci contains the instances that have the 
same value for that attribute. For nominal attributes the 
number of splits is equal to the number of attribute values. 
The numeric attributes are discretized into two intervals by 
choosing a breakpoint value. All their values are first ordered 
(excluding repetitions) and each one is considered as a 
possible breakpoint, then the breakpoint that minimizes the 
MDL score of the resulting data split is chosen. For attributes 
with too many values an equal-interval binning is applied 
first. The width of the interval h is computed by using the 
Scott’s method as 
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and σ – the standard deviation. The process of growing the 
clustering tree is controlled by a parameter evaluating the 
information compression at each node, computed as the 
difference between the code length of the data at that node 
and the MDL of the data split produced by the selected 
attribute. If the compression drops bellow a specified cutoff 
value (parameter c) the process of growing the tree stops and 
a leaf node is created. 

Figure 1.  MDL-Cluster algorithm (c is the compression cutoff). 

The MDL-Cluster algorithm is implemented as an 
extension of the Weka package [7] and is available at 
http://www.cs.ccsu.edu/~markov/MDLclustering/. Below is 
its output produced from the soybean-small dataset (UCI ML 
repository [1]). This dataset is also included in the empirical 
evaluation (Section VI). The clustering perfectly matches the 
known classes (the numbers in square brackets show the 
class distribution followed by the majority class label).  

> java MDLcluster data/soybean-small.arff 150 
stem-cankers=0 (51.15) [0,10,0,0] D2 
stem-cankers=1 (153.77) 
  canker-lesion=1 (78.09) [0,0,10,0] D3 
  canker-lesion=2 (42.95) [0,0,0,8] D4 
stem-cankers=2 (53.56) [0,0,0,9] D4 
stem-cankers=3 (46.84) [10,0,0,0] D1 

This example also illustrates how the cutoff value may be 
chosen. The cluster stem-cankers=1 has substantially higher 
MDL (153.77) than the other three clusters at the same level, 
which indicates that it may be further split to produce a 
better compression at its subclusters. Thus a cutoff value of 
150 (specified in the command line) splits that cluster, but 
keeps the other two because their compression is lower. 



V. EFFICIENT COMPUTATION OF MDL 
The key part of computing MDL is finding the 

parameters ki, as the other parameters involved, k, m and n, 
can be determined before processing the actual data 
instances. The approach we take is based on the so-called 
attribute-value matrix ijA . It’s a square binary matrix kk ×  
(k is the total number of attribute-value pairs in the data), 
initialized with 0’s and processed as follows. Each data 
instance is represented as a binary vector ),...,,( 21 kxxx , 
where each of its components xi corresponds to an attribute 
value. If that value is present in the instance xi=1, otherwise 
xi=0. For each instance vector Dxxx k ∈),...,,( 21  and each of 
its non-zero components (xi=1) the ith row  of   the    matrix 
is OR-ed with the instance vector, i.e. 

),...,,(),...,,(),...,,( 212121 kikiiikii xxxAAAAAA ∨= . In this way 
when all instances are processed the number of 1’s in the ith 
row of the matrix represents the number of attribute-values ki 
in cluster Ci, i.e. � =

= k

j iji Ak
1

.  

The computational complexity of the algorithm is O(nk2), 
where n is the number of instances and k – the number of 
attribute-value pairs in data. Since the basic operation 
performed k2 times is a one-bit OR, bit-level parallel 
implementations may substantially reduce its computational 
complexity. A simple use of a bitwise OR operation reduces 
this term by a factor of 32 or 64 (depending on the processor 
architecture). Another advantage is that the algorithm does 
not require storing the instances in the memory as they are 
processed one at a time. The Java implementation of the 
algorithm that we ran on a 3GHz Intel-based PC processed 
the largest dataset from Table I (reuters-3class) in 9 seconds. 

VI. EMPIRICAL EVALUATION 
We evaluated our clustering algorithm on 20 datasets 

from the UCI ML repository [1], listed in Table I. We 
selected pure nominal, pure numeric and mixed datasets with 
various number of attributes, instances and classes (given in 
parentheses after the name of the dataset). The pure nominal 
and mixed datasets were binarized (indicated with the suffix 
“–bin”) and also used for evaluation. The original reuters 
dataset was used to create reuters-2class and reuters-3class 
datasets by including the instances from the two and three 
largest classes correspondingly. The MDL-Cluster algorithm 
was compared with the k-means and EM algorithms as 
implemented in the Weka system [7]. The latter were run 
with their default parameters and number of clusters set to 
the known number of classes. To minimize their dependence 
on the initial clustering we ran them 10 times with different 
random number seeds and the clustering, which maximized 
the classification accuracy, was used for comparison. The 
MDL-Cluster compression cutoff parameter was adjusted in 
order to obtain a clustering tree with number of leaves equal 
(or close to) the known number of classes. Then the leaf 
clusters were used for comparison. Three evaluation metrics 
were used – classification accuracy, log-likelihood, and 
holdout log-likelihood. Table I shows the results. 

The classification accuracy is computed as the 
proportion of instances from the majority class in the clusters 
(classes-to-clusters evaluation in Weka). This measure 
depends on whether the class labels are assigned consistently 
with the underlying patterns in the data and is an indication 
of the quality of the dataset (for example, the 1.00 accuracy 
of the soybean-small dataset means that its labeling perfectly 
matches the underlying patterns in the data). We used this 
measure to see whether MDL-Cluster is consistent with the 
best known and widely used classical clustering algorithms, 
which was confirmed by the experimental results. 

The log-likelihood function estimates the overall 
likelihood that the data come from a distribution 
corresponding to the given clustering and is defined as 
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where xi are instances and Cj – clusters. The experiments 
showed that according to this criterion MDL-Cluster 
performed comparably on all datasets and on 12 datasets 
performed better or equally well than k-means and EM.  

The holdout log-likelihood is a criterion for the entire 
model of clustering as it reflects its ability to predict new 
data. It is computed by randomly splitting the original data 
into a training set (66%) and a test set (34%) and then 
calculating the log-likelihood function on the test set 
clustered with the clustering model produced from the 
training set. According to this criterion MDL-Cluster 
performed comparably or better (on 11 datasets) than k-
means and EM.  

Our algorithm provides better classification accuracy 
than k-means and EM on all binary datasets and higher log-
likelihood scores on almost all of them. Also, with binary 
data the algorithm creates more balanced clustering trees 
thus avoiding the problem with highly branching attributes, 
which are often selected by the MDL evaluation metric. 

An important advantage of MDL-Cluster is that the 
models it creates are explicitly described by attribute values 
and in case of deeper trees have internal structure, which 
makes them easy to understand and use. For example, the 
tree produced from the reuters-3class dataset has three 
clusters and identifies the two most important attributes in 
the data as shown in the output below. 
> java MDLcluster eval/reuters-3class.arff 280000 
trade=0 (584469.05) 
  rate=0 (277543.73) [339,18,30] money 
  rate=1 (259602.51) [168,0,177] interest 
trade=1 (206999.39) [101,301,12] trade 

If we are interested in the structure of these clusters we may 
lower the compression threshold to 250000 and obtain the 
following tree. 
> java MDLcluster eval/reuters-3class.arff 250000 
trade=0 (584469.05) 
  rate=0 (277543.73) 
    mln=0 (160192.77) [178,10,28] money 
    mln=1 (129134.46) [161,8,2] money 
  rate=1 (259602.51) 
    market=0 (117196.81) [66,0,117] interest 
    market=1 (107679.77) [102,0,60] money 
trade=1 (206999.39) [101,301,12] trade 



This clustering indicates another important attribute (market) 
that splits the “interest” cluster in two. It also provides higher 
classification accuracy (0.74).  The tree is very similar to the 

one produced by the Weka’s J48 algorithm, which shows 
that the MDL evaluation measure can identify the important 
attributes in the data without using class information. 

TABLE I.  DATA SETS AND EXPERIMENTAL RESULTS. 

Dataset 
(nominal+numeric, 
instances/classes) 

Classification Accuracy Log-likelihood Holdout Log-likelihood 

k-means EM MDL k-means EM MDL k-means EM MDL 
anneal (32+6, 898/5) 0.54 0.64 0.77 -21.82 -21.36 -23.25 -20.57 -20.95 -22.69 
anneal-bin (64+6, 898/5) 0.57 0.60 0.84 -25.21 -25.57 -25.06 -24.71 -25.14 -24.25 
australian (9+6, 690/2) 0.83 0.74 0.66 -20.83 -20.89 -22.42 -19.20 -18.57 -21.70 
australian-bin (36+6, 690/2) 0.58 0.56 0.63 -17.27 -19.17 -18.66 -16.05 -17.55 -18.58 
breast (0+9, 699/2)  0.96 0.94 0.92 -13.50 -12.68 -13.22 -13.22 -12.23 -12.81 
ecoli (0+7, 336/8) 0.74 0.83 0.73 -18.48 -18.40 -18.49 -18.15 -18.25 -18.24 
german (13+7, 1000/2) 0.65 0.64 0.70 -30.56 -29.78 -29.89 -29.55 -29.11 -29.18 
german-bin (52+7, 1000/2) 0.64 0.59 0.70 -39.50 -39.69 -39.28 -39.20 -39.38 -39.02 
heart (0+13, 270/2) 0.80 0.81 0.62 -26.05 -26.16 -26.55 -25.60 -25.72 -26.01 
iris (0+4, 150/3) 0.89 0.91 0.82 -10.71 -10.70 -10.81 -9.97 -9.95 -10.17 
lymph (15+3, 148/4) 0.53 0.74 0.62 -13.67 -13.47 -14.28 -13.44 -13.22 -14.07 
lymph-bin (35/3, 148/4) 0.57 0.67 0.71 -18.48 -19.37 -18.35 -21.26 -19.88 -19.64 
reuters-2class (2886+0, 927/2) 0.76 0.72 0.87 -205.81 -203.35 -205.95 -210.97 -208.17 -203.45 
reuters-3class (2886+0, 1146/3) 0.60 0.61 0.71 -206.10 -191.84 -197.05 -201.55 -194.19 -200.10 
segment (0+19, 2310/7) 0.67 0.62 0.57 -79.34 -75.02 -79.08 -76.09 -71.30 -76.00 
soybean-small (35+0, 47/4) 1.00 1.00 1.00 -10.79 -10.79 -10.71 -11.81 -11.81 12.00 
soybean-small-bin (45+0, 47/4) 1.00 1.00 1.00 -14.96 -14.96 -14.96 -16.26 -16.26 -16.26 
soybean (35+0, 683/19) 0.55 0.69 0.58 -14.84 -13.84 -17.08 -15.82 -14.29 -17.37 
soybean-bin (83+0, 683/19) 0.55 0.64 0.70 -21.39 -21.12 -20.80 -23.30 -21.70 -21.53 
vehicle (0+18, 846/4) 0.38 0.37 0.43 -55.55 -56.09 -55.55 -55.29 -54.96 -54.48 

 
VII. CONCLUSION 

In this paper, we described an MDL-based measure that 
evaluates clustering quality and presented an algorithm that 
uses this measure for clustering. We evaluated our algorithm 
on benchmark datasets and showed that it compares 
favorably to two traditional clustering algorithms, k-means 
and EM. The empirical study also showed that the algorithm 
performs well with binary and sparse data, which are typical 
in text data mining. Furthermore, it is a hierarchical model-
based clustering algorithm that provides structural 
information about the clusters in human understandable 
form. Our future work will be aimed at improving its 
efficiency by parallel implementations and applying it to 
large text and web datasets. 
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