MDL-Based Unsupervised Attribute Ranking

Zdravko Markov
Computer Science Department
Central Connecticut State University
New Britain, CT 06050, USA
http://www.cs.ccsu.edu/~markov/
markovz@ccsu.edu
MDL-Based Unsupervised Attribute Ranking

• Introduction (Attribute Selection)
• MDL-based Clustering Model Evaluation
• Illustrative Example (“play tennis” data)
• Attribute Ranking Algorithm
• Hierarchical Clustering Algorithm
• Experimental Evaluation
• Conclusion
Attribute Selection

- Supervised / Unsupervised. Find the smallest set of attributes that
 - maximizes predictive accuracy
 - best uncovers interesting natural groupings (clusters) in data according to the chosen criterion

- Subset Selection / Ranking (Weighting)
 - Computationally expensive: 2^m attribute sets for m attributes
 - Assumes that attributes are independent
Supervised Attribute Selection

- **Wrapper methods** create prediction models and use the predictive accuracy of these models to measure the attribute relevance to the classification task.
- **Filter methods** directly measure the ability of the attributes to determine the class labels using statistical correlation, information metrics, probabilistic or other methods.
- **There exist numerous methods** in this setting due to the wide availability of model evaluation criteria in supervised learning.
Unsupervised Attribute Selection

- **Wrapper methods** evaluate a subset of attributes by the quality of clustering obtained by using these attributes.

- **Filter methods** explore classical statistical methods for dimensionality reduction, like PCA and maximum variance, information-based or entropy measures.

- There exist very few methods in this setting generally because of the difficulty to evaluate clustering models.
Clustering Model Evaluation

Chapter 4: Evaluating Clustering
- MDL-Based Model and Feature Evaluation

http://www.cs.ccsu.edu/~markov/
http://www.cs.ccsu.edu/~markov/dmwdata.zip
http://www.cs.ccsu.edu/~markov/DMWsoftware.zip
Clustering Model Evaluation

• Consider each possible clustering as a hypothesis H that describes (explains) data D in terms of frequent patterns (regularities).

• Compute the description length of the data $L(D)$, the hypothesis $L(H)$, and data given the hypothesis $L(D|H)$.

• $L(H)$ and $L(D)$ are the minimum number of bits needed to encode (or communicate) H and D respectively.

• $L(D|H)$ represents the number of bits needed to encode D if we know H.

• If we know the pattern of H, no need to encode all its occurrences in D, rather we may encode only the pattern itself and the differences that identify each individual instance in D.
Minimum Description Length (MDL) and Information Compression

- The more regularity in D the shorter description length $L(D|H)$.
- Need to balance $L(D|H)$ with $L(H)$, because the latter depends on the complexity of the pattern. Thus **the best hypothesis** should
 - minimize the sum $L(H)+L(D|H)$ (**MDL principle**)
 - or maximize $L(D) - L(H) - L(D|H)$ (**Information Compression**)
Encoding MDL

- Hypotheses and data are uniformly distributed and the probability of occurrence of an item out of \(n \) alternatives is \(1/n \).
- Minimum code length of the message that a particular item has occurred is \(-\log_2 1/n = \log_2 n\) bits.
- The number of bits needed to encode the choice of \(k \) items out of \(n \) possible items is

\[
-\log_2 \frac{1}{\binom{n}{k}} = \log_2 \binom{n}{k}
\]
Encoding MDL (attribute-value)

• Data D, instance $X \in D$, X is a set of m attribute values, $|X| = m$
• $T = \bigcup_{X \in D} X$ - set of all attribute values in D, $k = |T|$
• Cluster C_i is defined by the set of all attribute values $T_i \subseteq T$ that occur in its members, $C_i = \{ X \in C_i, X \subseteq T_i \}$
• Clustering $H = \{ C_1, C_2, \ldots, C_n \}$ is defined by $\{ T_1, T_2, \ldots, T_n \}$, $k_i = |T_i|$

$$ L(C_i) = \log_2 \left(\frac{k}{k_i} \right) + \log_2 n $$

$$ L(H) = \sum_{i=1}^{n} L(C_i) $$

$$ L(D_i | C_i) = |C_i| \times \log_2 \left(\frac{k_i}{m} \right) $$

$$ L(D | H) = \sum_{i=1}^{n} L(D_i | C_i) $$

$$ \text{MDL}(C_i) = \log_2 \left(\frac{k}{k_i} \right) + \log_2 n + |C_i| \times \log_2 \left(\frac{k_i}{m} \right) $$

$$ \text{MDL}(H) = \sum_{i=1}^{n} \text{MDL}(C_i) $$
Play Tennis Data

<table>
<thead>
<tr>
<th>ID</th>
<th>outlook</th>
<th>temp</th>
<th>humidity</th>
<th>windy</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rainy</td>
<td>mild</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
</tbody>
</table>

\[C_1 = \{1, 2, 3, 4, 8, 12, 14\} \quad \text{(humidity=high)}\]

\[C_2 = \{5, 6, 7, 9, 10, 11, 13\} \quad \text{(humidity=normal)}\]

\[T_1 = \{\text{outlook=sunny, outlook=overcast, outlook=rainy, temp=hot, temp=mild, humidity=high, windy=false, windy=true}\}\]

\[T_2 = \{\text{outlook=sunny, outlook=overcast, outlook=rainy, temp=hot, temp=mild, temp=cool, humidity=normal, windy=false, windy=true}\}.\]
Clustering Play Tennis Data

\[MDL(C_i) = \log_2 \left(\frac{k}{k_i} \right) + \log_2 n + |C_i| \times \log_2 \left(\frac{k_i}{m} \right) \]

\[k_1 = |T_1| = 8, \quad k_2 = |T_2| = 9, \quad k = 10, \quad m = 4, \quad n = 2 \]

\[MDL(C_1) = \log_2 \left(\frac{10}{8} \right) + \log_2 2 + 7 \times \log_2 \left(\frac{8}{4} \right) = 49.39 \]

\[MDL(C_2) = \log_2 \left(\frac{10}{9} \right) + \log_2 2 + 7 \times \log_2 \left(\frac{9}{4} \right) = 53.16 \]

\[MDL(\{C_1, C_2\}) = MDL(\text{humidity}) = 102.55 \text{ bits} \]

1. \[MDL(\text{temp}) = 101.87 \]
2. \[MDL(\text{humidity}) = 102.56 \]
3. \[MDL(\text{outlook}) = 103.46 \]
4. \[MDL(\text{windy}) = 106.33 \]

- Best attribute is \textbf{temp}
MDL Ranker

- Let A have values v_1, v_2, \ldots, v_p
- Clustering $\{C_1, C_2, \ldots, C_p\}$, where $C_i = \{X | x_i \in X\}$
- Let $V_i^A = \emptyset$
- For each data instance $X = \{x_1, x_2, \ldots, x_m\}$
 - For each attribute A
 - For each value x_i
 - $V_i^A = V_i^A \cup \{x_i\}$
 - $k_i = \sum_{j=1}^{m} |V_j^A|$
 - Compute $MDL(\{C_1, C_2, \ldots, C_p\})$

- Incremental (no need to store instances)
- Time $O(nm^2)$, n is the number of data instances
- Space $O(pm^2)$, p is the max number of attribute values
- Evaluates 3204 instances with 13195 attributes (trec data) in 3 minutes.
Experimental Evaluation Data

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Instances</th>
<th>Attributes</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>reuters</td>
<td>1504</td>
<td>2887</td>
<td>13</td>
</tr>
<tr>
<td>reuters-3class</td>
<td>1146</td>
<td>2887</td>
<td>3</td>
</tr>
<tr>
<td>reuters-2class</td>
<td>927</td>
<td>2887</td>
<td>2</td>
</tr>
<tr>
<td>trec</td>
<td>3204</td>
<td>13195</td>
<td>6</td>
</tr>
<tr>
<td>soybean</td>
<td>683</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td>soybean-small</td>
<td>47</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>iris</td>
<td>150</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>ionosphere</td>
<td>351</td>
<td>35</td>
<td>2</td>
</tr>
</tbody>
</table>

Java implementations of MDL ranking and clustering available from http://www.cs.ccsu.edu/~markov/DMWsoftware.zip
Experimental Evaluation Metrics

- **Average Precision**

 \[
 \text{Average Precision} = \frac{1}{|D_q|} \sum_{k=1}^{|D|} r_k \times \text{PrecisionAtRank}(k)
 \]

- **PrecisionAtRank**

 \[
 \text{PrecisionAtRank}(k) = \frac{1}{k} \sum_{i=1}^{k} r_i \quad r_i = \begin{cases}
 1 & \text{if } a_i \in D_q \\
 0 & \text{otherwise}
 \end{cases}
 \]

- **Classes-to-clusters accuracy** ("true" cluster membership)

 \begin{align*}
 \text{root} & [5, 9] \\
 \text{temperature=hot} & [2, 2] \\
 \text{outlook=sunny} & [2] \text{ no} \\
 \text{outlook=overcast} & [2] \text{ yes} \\
 \text{temperature=mild} & [4, 2] \\
 \text{windy=FALSE} & [2, 1] \text{ yes} \\
 \text{windy=TRUE} & [2, 1] \text{ yes} \\
 \text{temperature=cool} & [3, 1] \\
 \text{windy=FALSE} & [2] \text{ yes} \\
 \text{windy=TRUE} & [1, 1] \text{ no}
 \end{align*}

 Clusters (leaves): 6
 Correctly classified instances: 11 (78%)
Average Precision of Attribute Ranking

| Data set | $|D_q|$ | InfoGain | MDL | Error | Entropy |
|------------------|-------|----------|--------|-------|---------|
| reuters | 15 | 0.3183 | 0.1435 | 0.0642| 0.0030 |
| reuters-3class | 10 | 0.3948 | 0.1852 | 0.1257| 0.0027 |
| reuters-2class | 7 | 0.5016 | 0.2438 | 0.1788| 0.3073 |
| trec | 14 | 0.4890 | 0.2144 | 0.0637| 0.0010 |
| soybean | 16 | 0.6265 | 0.5606 | 0.3871| 0.4152 |
| soybean-small | 2 | 0.6428 | 0.3500 | 0.0913| 0.1213 |
| iris | 1 | 1.0000 | 1.0000 | 1.0000| 0.3333 |
| ionosphere | 9 | 0.6596 | 0.5041 | 0.2575| 0.4252 |

D_q – set of attributes selected by Wrapper Subset Evaluator with Naïve Bayes classifier.
InfoGain – supervised attribute ranking using Information Gain Evaluator.
Error – unsupervised ranking based on evaluating the quality of clustering by the *sum of squared errors*.
Entropy – unsupervised ranking based on the reduction of the entropy in data when the attribute is removed (Dash and Liu 2000).
Classes-To-Clusters Accuracy With Reuters Data

EM

k-means
Classes-To-Clusters Accuracy With Reuters-3class Data

EM

K-means

- MDL ranked
- InfoGain ranked
Classes-To-Clusters Accuracy With Soybean Data

EM

k-means

MDL ranked
InfoGain ranked

EM

k-means
MDL-Based Clustering

Function $MDL-Cluster(D)$

1. Choose attribute $A = \arg \min_i MDL(A_i)$
2. Let A take values v_1, v_2, \ldots, v_p
3. Split data $D = \bigcup_{i=1}^n C_i$, $C_i = \{X \mid x_i \in X\}$
4. If $\text{Comp}(A) > \sum_{i=1}^p \text{Comp}(C_i)$ then stop. Return D.
5. For each $i = 1, \ldots, n$ Call $MDL-Cluster(C_i)$
Clustering Reuters-2class Data

root (516550.58) [608, 319]
 trade=0 (434956.39) [507, 18]
 rate=0 (266126.68) [339, 18]
 monei=1 (122154.60) [148] money
 monei=0 (161236.34) [191, 18] money
 rate=1 (125589.70) [168]
 currenc=0 (70870.68) [100] money
 currenc=1 (50491.67) [68] money
 trade=1 (204850.37) [301, 101]
 market=0 (157978.80) [186, 39]
 countri=1 (64418.90) [67, 20] trade
 countri=0 (106457.20) [119, 19] trade
 market=1 (106422.43) [115, 62]
 bank=0 (73572.74) [94, 11] trade
 bank=1 (48489.70) [21, 51] money

Clusters (leaves): 5
Correctly classified instances: 838 (90%)
Comparing MDL, EM and k-Means

<table>
<thead>
<tr>
<th>Data set</th>
<th>EM</th>
<th></th>
<th>k-Means</th>
<th></th>
<th>MDL-Cluster</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc. %</td>
<td>No. of Clusters</td>
<td>Acc. %</td>
<td>No. of Clusters</td>
<td>Acc. %</td>
<td>No. of Clusters</td>
</tr>
<tr>
<td>reuters</td>
<td>43</td>
<td>6</td>
<td>31</td>
<td>13</td>
<td>59</td>
<td>12</td>
</tr>
<tr>
<td>reuters-3class</td>
<td>58</td>
<td>3</td>
<td>48</td>
<td>3</td>
<td>73</td>
<td>7</td>
</tr>
<tr>
<td>reuters-2class</td>
<td>71</td>
<td>2</td>
<td>61</td>
<td>2</td>
<td>90</td>
<td>7</td>
</tr>
<tr>
<td>trec</td>
<td>26</td>
<td>6</td>
<td>29</td>
<td>6</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>soybean</td>
<td>60</td>
<td>19</td>
<td>51</td>
<td>19</td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>soybean-small</td>
<td>100</td>
<td>4</td>
<td>91</td>
<td>4</td>
<td>83</td>
<td>4</td>
</tr>
<tr>
<td>iris</td>
<td>95</td>
<td>3</td>
<td>69</td>
<td>3</td>
<td>96</td>
<td>3</td>
</tr>
<tr>
<td>ionosphere</td>
<td>89</td>
<td>2</td>
<td>81</td>
<td>2</td>
<td>80</td>
<td>3</td>
</tr>
</tbody>
</table>
Conclusion

- MDL-ranker without class information performs closely to the InfoGain method, which essentially uses class information.
- Thus, our approach can improve the performance of clustering algorithms in purely unsupervised setting.
- MDL-cluster outperforms EM and k-means on most benchmark data sets.
- Numeric attributes?
- Subset evaluation?
- Non-hierarchical clustering?

Thank You!