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The paper presents a framework to induction of concept hierarchies based on consistent
integration of metric and similarity�based approaches� The hierarchies used are subsump�
tion lattices induced by the least general generalization operator �lgg� commonly used
in inductive learning� Using some basic results from lattice theory the paper introduces
a semantic distance measure between objects in concept hierarchies and discusses its
applications for solving concept learning and conceptual clustering tasks� Experiments
with well known ML datasets represented in three types of languages � propositional
�attribute�value�	 atomic formulae and Horn clauses	 are also presented�

Keywords
 Metrics	 Concept Learning	 Conceptual clustering	 Machine Learning�

�� Introduction

Inductive learning addresses mainly classi�cation tasks where a series of training

examples �instances� are supplied to the learning system and the latter builds an

intensional or extensional representation of the examples �hypothesis�� The ap�

proaches to inductive learning are based mainly on generalization�specialization or

similarity�based techniques� Two types of systems are considered here � concept

learning and conceptual clustering� They both generate inductive hypotheses made

by abstractions �generalizations� from speci�c examples and di�er in the way ex�

amples are presented to the system �whether or not they are pre�classi�ed�� The

hypotheses generated by these systems usually form a partially ordered set under

some generality ordering� The properties of partially ordered sets are well studied

in lattice theory� One concept from this theory is mostly used in inductive learning

� this is the least general generalization �lgg� which given two hypotheses builds

their most speci�c common generalization� The existence of an lgg in a hypothesis

space implies that this space is a semi�lattice �the lgg plays the role of in�mum��

The idea behind the lgg is to make �cautious� �minimal� generalization� However



this property of the lgg greatly depends on how similar are the hypotheses�examples

used to build the lgg� For example there exist elements in the hypothesis space

whose lgg is the top element �empty hypothesis��

An obvious solution of the latter problem is to use a distance �metric� over

the hypothesis�example space in order to evaluate the similarity between the hy�

potheses�examples� The basic idea is when building an lgg to choose the pair of

hypotheses�examples with the minimal distance between them in order to produce

the minimal lgg� Thus the problem is to �nd a distance measure which is both well

coupled with the lgg and account for the background knowledge and for the coverage

of positive�negative examples� This is the main problem we address in the present

paper�

Hereafter we propose a consistent way to integrate a syntactical lgg with seman�

tic evaluation of the hypotheses� For this purpose we use two di�erent relations on

the hypothesis space � a constructive one	 used to generate lgg
s and a semantic one

giving the coverage�based evaluation of the lgg� These two relations jointly imple�

ment a semantic distance measure� The formal background for this is a height�based

de�nition of a semi�distance on join semi�lattices� We use some basic results from

lattice theory and introduce a language independent coverage�based height func�

tion� We also de�ne the necessary conditions for two relations to form a correct

height function�

The paper is organized as follows� The next section outlines the basic notions

from lattice theory used throughout the paper� Section � introduces the new height�

based semi�distance and Section � discusses its applications in a series of languages

commonly used in ML� Section  discusses related work and Section � outlines the

directions for future work�

�� Preliminaries

In this section we introduce a height�based distance measure on a join semi�lattice�

We use some basic notions from lattice theory with some modi�cations and exten�

sions �for a survey of metrics on partially ordered sets see ���

De�nition � �Semi�distance� Quasi�metric�� A semi�distance �quasi�metric�

is a mapping d � O � O � � on a set of objects O with the following properties

�a� b� c � O��

�� d�a� a� � � and d�a� b� � ��

�� d�a� b� � d�b� a� �symmetry��

�� d�a� b� � d�a� c� � d�c� b� �triangle inequality��

De�nition � �Order preserving semi�distance�� A semi�distance d � O�O �

� on a partially ordered set �O��� is order preserving i� for all a� b� c � O	 such

that a � b � c it follows that d�a� b� � d�a� c� and d�b� c� � d�a� c�



De�nition � �Join	Meet semi�lattice�� A join�meet semi�lattice is a partially

ordered set �A��� in which every two elements a� b � A have an in�mum�supremum�

De�nition 
 �Diamond inequality�� Let �A��� be a join semi�lattice� A semi�

distance d � A�A� � satis�es the diamond inequality i� the existence of supfa� bg

implies the following inequality� d�inffa� bg� a�� d�inffa� bg� b�� d�a� supfa� bg��

d�b� supfa� bg��

De�nition � �Size function�� Let �A��� be a join semi�lattice� A mapping

s � A�A� � is called a size function if it satis�es the following properties�

S�� s�a� b� � ���a� b � A and a � b�

S�� s�a� a� � ���a � A�

S�� �a� b� c � A	 such that a � c and c � b it follows that s�a� b� � s�a� c� � s�c� b�

and s�c� b� � s�a� b��

S�� Let c � inffa� bg	 where a� b � A� For any d � A	 such that a � d and b � d

it follows that s�c� a� � s�c� b� � s�a� d� � s�b� d��

Consider for example the partially ordered set of �rst order atoms under ��

subsumption� A size function s�a� b� on this set can be de�ned as the number of

di�erent functional symbols �a constant is considered a functional symbol of arity

zero� occurring in the substitution � mapping a onto b �a� � b�� A family of

similar size functions is introduced in �	 where they are called a size of substitution�

Although well de�ned these functions do not account properly for the variables in

the atoms and consequently cannot be used with non�ground atoms�

Theorem �� Let �A��� be a join semi�lattice and s � a size function� Then the

function d�a� b� � s�inffa� bg� a� � s�inffa� bg� b� is a semi�distance on �A����

Proof�

�� d is non�negative by S� and d�a� a� � s�inffa� ag� a� � s�inffa� ag� a� �

s�a� a� � s�a� a� � ��

�� d is symmetric by de�nition�

�� We will show that d�a�� a�� � d�a�� a�� � d�a�� a��� Let c � inffa�� a�g	

b� � inffa�� a�g	 b� � inffa�� a�g	 d � inffb�� b�g �Figure ��� By S� we have

s�c� a�� � s�d� a�� � s�d� b�� � s�b�� a��� And by analogy s�c� a�� � s�d� b�� �

s�b�� a��� Then d�a�� a�� � s�c� a�� � s�c� a�� � s�d� b�� � s�b�� a�� � s�d� b�� �

s�b�� a�� � s�b�� a��� s�b�� a��� s�b�� a��� s�b�� a�� � d�a�� a��� d�a�� a��� �

A widely used approach to de�ne a semi�distance is based on an order preserving

size function and the diamond inequality instead of property S�� The use of property

S� however is more general because otherwise we must assume that ��� all intervals
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Fig� �� A semi�lattice structure

in the lattice are �nite and ��� if two elements have an upper bound they must have

a least upper bound �supremum� too� An illustration of this problem is shown in

Figure �	 where a� is an upper bound of b� and b� and e � supfb�� b�g� Generally

the interval �e� a�� may be in�nite or e may not exist� This however does not a�ect

our de�nition of semi�distance�

Further	 a size function can be de�ned by using the so called height functions�

The approach of height functions have the advantage that it is based on estimating

the object itself rather than its relations to other objects�

De�nition � �Height function�� A function h is called height of the elements of

a partially ordered set �A��� if it satis�es the following two properties�

H�� For every a� b � A if a � b then h�a� � h�b� �isotone��

H�� For every a� b � A if c � inffa� bg and d � A such that a � d and b � d then

h�a� � h�b� � h�c� � h�d��

Theorem �� Let �A��� be a join semi�lattice and h be a height function� Let

s�a� b� � h�b�� h�a���a � b � A� Then s is a size function on �A����

Proof�

�� s�a� b� � h�b�� h�a� � � by H��

�� s�a� a� � h�a�� h�a� � ��

�� Let a� b� c � A	 such that a � c� c � b� Then s�a� b� � h�b� � h�a� � �h�b� �

h�c�� � �h�c�� h�a�� � s�a� c� � s�c� b��

�� Let a� b� c � A � a � c� c � b� Then s�c� b� � s�c� b� � s�a� c� � s�a� b� by ��

� Let c � inffa� bg and d � A	 such that a � d and b � d� Then s�c� a��s�c� b� �

�h�a��h�c����h�b��h�c�� � h�a��h�b���h�c� � ��h�a��h�b���h�a��h�b��



�h�c� � ��h�c��h�d���h�a��h�b�� �h�c� � �h�d��h�a��� �h�d��h�b�� �

s�a� d� � s�b� d�� �

Corollary �� Let �A��� be a join semi�lattice and h be a height function� Then

the function d�a� b� � h�a� � h�b� � �h�inffa� bg���a� b � A is a semi�distance on

�A����

�� Semantic semi�distance on join semi�lattices

In this section we introduce a family of semantic height functions which are later

used to de�ne the corresponding semi�distance� The basic idea originates from the

notion of ground coverage in �rst order languages� We generalize this notion and

develop a universal language independent coverage�based height function�

Let A be a set of objects and let �� and �� be two binary relations on A� Let

also �� be a partial ordering and �A���� � a join semi�lattice�

De�nition  �Ground elements of a join semi�lattice �GA��� GA is the set

of all maximal elements of A w�r�t� ��	 i�e� GA � faja � A and 	
b � A � a �� bg�

De�nition � �Ground coverage�� For every a � A the ground coverage of a w�r�t

�� is Sa � fbjb � GA and a �� bg�

The ground coverage Sa can be considered as a de�nition of the semantics of a�

Therefore we call �� a semantic relation by analogy to the Herbrand interpretation

in �rst order logic used to de�ne the semantics of a given term� The other relation

involved	 �� is called constructive �or syntactic� relation because it is used to build

the lattice from a given set of ground elements GA�

The basic idea of our approach is to use these two relations	 �� and �� to de�ne

the semi�distance according to Corollary �� We use the syntactic relation �� to

�nd the in�mum and the semantic relation �� to de�ne the height function h� This

allows us to de�ne a proper distance measure even when the semantic relation is

intractable	 computationally expensive or even not a partial order	 i�e� when it is

impossible to use it as a constructive relation too �an example of such a relation is

logical implication��

Not any two relations however can be used for this purpose� The following

theorem states the necessary conditions for two relations to form a correct height

function�

Theorem �� Let A be a set of objects and let �� and �� be two binary relations

in A such that�

�� For every a� b � A if a �� b then jSaj � jSbj
�

�� For every a� b � A and c � inffa� bg such that there exists d � supfa� bg one

of the following must hold�

�Generally an isotone property is required here� However we skip the other case	 jSaj � jSbj since
it is analogous�



C�� jSdj � jSaj and jSdj � jSbj

C�� jSdj � jSaj and jScj � jSbj

C�� jSdj � jSbj and jScj � jSaj

Then there exists a family of height functions h�a� � x�jSaj	 where a � A	 x � �

and x � ��

Proof�

�� Let a� b � A	 a �� b� Then by the assumptions jSaj � jSbj and hence h�a� �

h�b��

�� Let a� b � A	 c � inffa� bg and d � supfa� bg�

�a� Assume that C� is true� Then jSdj � jSaj and jSdj � jSbj � jSaj �

jSdj�� and jSbj � jSdj�� � �jSaj � �jSdj � � and �jSbj � �jSdj � ��

Hence h�a��h�b� � x�jSaj�x�jSbj � x�jSdj���x�jSdj�� � �x�jSdj�� �

x�x�jSdj�� � x�jSdj � h�d� � h�c� � h�d��

�b� Assume that C� is true� Then jSdj � jSaj and jScj � jSbj� Hence

h�a� � h�b� � h�c� � h�d��

�c� Assume that C� is true� Then jSdj � jSbj and jScj � jSaj� Hence

h�a� � h�b� � h�c� � h�d�� �


� Applications


��� General algorithm

In this section we outline an algorithm for building concept hierarchies based on

the ideas discussed in the previous sections� Various versions of this algorithm

are reported elsewhere ���� Using a given set of examples E the algorithm builds

a concept hierarchy G �partial semi�lattice�	 where E is the set of all maximal

elements of G� The algorithm is as follows ��� is the semantic relation according

to Theorem ���

�� Initialization� G � E	 C � E�

�� If jCj � � then exit�

�� T � fhjh � lgg��a� b�� �a� b� � argmina�b�Cd�a� b�g�

�� T � T n fhjh � T� 
a � C�� 
b � C�� C� �� C�� h �� a� h �� bg �for concept

learning only��

� DC � faja � C and 
h � T � h �� ag�

�� C � C nDC�



�� G � G  T 	 C � C  T 	 go to step ��

The computational complexity of the algorithm can be estimated as follows� The

most expensive step in the algorithm is the computation of T at step �� Generally

there are two possibilities�

�� jT j � �� Then in the worst case DC in step  will contain only two elements

�a and b from which T is generated in step ��� Thus the number of elements

in C decreases by � at every step and assuming that jEj � n the outermost

loop of the algorithm executes n� � times� If the set C contains k elements

then there are k�k � ���� di�erent pairs for which lgg
s must be calculated�

As n is an upper bound of k	 the complexity of the algorithm is O�n���

�� If jT j � � then C may grow and the complexity of the algorithm becomes

much higher� Generally the number of elements in T depends on the quality

of the distance measure used and the number of examples E� If we use a

more sophisticated distance measure the chance to have more than one pair

of elements with the same distances between them is lower� In practical

experiments we always choose a single element from T � For this purpose some

heuristics can be applied too�

The algorithm can be used to solve both concept learning and conceptual cluster�

ing tasks� For conceptual clustering	 step � is omitted and in this case G represents

the concept hierarchy	 where the successors of the root represent the splitting of

the initial set of examples E� For concept learning	 the class membership for the

examples is used in step � to prevent the generation of incorrect hypotheses� The

construction of the lgg and the computation of the distance function d are language

speci�c and will be discussed in the following subsections�


��� Attribute�value �propositional� language

An example or a hypothesis in this language is a conjunction of propositions �attribute�

value pairs� which can also be represented as a set of propositions� The partial

ordering � here is the set inclusion � between hypotheses �examples�� The lgg

�in�mum� of two elements is de�ned as their intersection	 i�e� lgg�a� b� � a � b�

Two types of height functions can be used here� The �rst one is h�a� � jaj� This

function implements the most common way of representing generality of hypotheses

with nominal attributes � the so called dropping condition� Thus a syntactic distance

measure can be de�ned as d�a� b� � ��jaj � ��jbj � �� ��ja�bj�

The semantic distance introduced in the previous sections can be de�ned by

using a coverage function cov�a� � jfbjb � E� a � bgj	 where E is the set of examples�

Then according to Theorem � �relation � plays the role of both relations �� and

��� we have d�a� b� � ��cov�a� � ��cov�b� � �� ��cov�ja�bj��

In this framework we discuss two experiments both performed with the semantic

distance� The �rst one is with the well known MONK� dataset �� We use only the
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Fig� �� Propositional concept hierarchy for MONK� dataset

�� positive examples from the training sample ���� examples�� As all the examples

are of a single class we apply conceptual clustering �excluding step ��� The top two

levels of the concept hierarcy produced by the algorihm are shown in Figure �� We

test each concept �node� in this hierarcy against all ��� examples in the training

set� The pair of numbers in square brackets at each node show the distribution of

positive�negative examples covered by the node� As all concepts at the second level

of the hierarchy �enclosed in boxes in Figure �� do not cover any negative examples

we use them as a solution for the concept learning task� They in fact describe

exactly the target theory and thus provide ���� accuracy�

The other experiment we outline here is with the DNA promoter sequence

database obtained from the UCI ML repository ���� This is a domain mainly used

as a testbed for ML systems integrating empirical and analytical learning� The

dataset describes a speci�c property of DNA called promoter� The learning task

is to identify the sequence of nucleotides that exhibit this property� ��� examples

are provided �� positive and � negative� each one describing a sequence of �

nucleotides� Each attribute speci�es the nucleotide �a	 g	 t or c� occurring at the

corresonding position is the sequence� We ran the algorithm with �� randomly

chosen positive examples �the set E�� The concept hierarchy obtained is shown in

Figure �� The nodes show the class distribution �positive�negative� of the examples

covered by the node concept� A promoters theory can be generated by choosing

some of the nodes in this hierarchy� The choice is based on the coverage of negative

examples� By using a threshold � and then eliminating all concepts covered by oth�

ers we come up with � concepts �enclosed in boxes in Figure ��� This theory covers
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Fig� �� The promoters data concept hierarchy� The nodes show the class distribution �posi�
tive�negative� of the examples covered by the node concept� The enclosed in boxes concepts
provide �� accuracy

� negative and �� positive examples thus providing ��� accuracy� Similar accura�

cies are reported in � where a number of ML systems are tested on this dataset�

It is important to note however that these systems use negative examples as well�

We also tested our algorithm as concept learner with negative examples �applying

step �� and got similar results� The conceptual clustering approach however is more

general and provides more information about the generated concepts�


��� Atomic formulae

The language of the �rst order atomic formulae can be seen as an intermediate

step between the propositional and the full relational language �e�g� Horn clauses��

Its main advantage with respect to the propositional language is the possibility to

de�ne explicitly the equality of attribute values� The algebraic properties of this

language are studied in 		 where the author shows that the set of atoms with same

functors and arity augmented by adding a 
universal atom
 and a 
null atom
 forms

a complete lattice� In this lattice the partial ordering is the instance relation ���

and the meet and the join operations are the well known greatest common instance

�obtained by uni�cation� and least general generalization �lgg	 obtained by anti�

uni�cation��

The instance relation between atoms can play the role of both syntactic and

semantic relation according to Theorem �� Thus we can de�ne the distance function

d�a� b� � ��cov�a����cov�b������cov�ja�bj�	 where cov�a� � jfbjb � E� a � bgj and

E is the set of examples�

Other height functions can also be used in this language� In 	 a function eval�

uating the generality of atoms is proposed� It is called size�A� �note that this is

not the formal size function according to De�nition � and is de�ned as the num�

ber of symbol occurrences in A minus the number of distinct variables occurring

in A� A � B implies size�B� � size�A� and A � B implies size�A� � size�B��

Also	 for any A and B there is no chain from A to B whose length is greater than

size�B�� size�A�� Unfortunately the Reynolds
 size function does not satisfy the

second formal property of a height function� Nevertheless we used this function in

our experiments and got satisfactory results especially when the set of examples
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Fig� �� Relational concept hierarchy for the MONK� dataset

E is small �in this case the coverage function cannot provide good estimate of the

generality of the hypotheses��

A simpli�ed version of the Reynolds
 size function is proposed in �� It is based

on the number of functional symbols in the atom� Though formally a height	 this

function does not account properly for the variables in the atoms and consequently

gives poor results especially at the higher levels of the concept hierarchy where more

variable appear�

In the framework of atomic formulae we discuss two experiments with our algo�

rithm� They are performed with the semantic distance and also with the Reynolds


size function and show similar results �the Hutchinson
s function performed poorly��

Figure � shows the top portion of the concept hierarchy for the MONK� dataset

using �� positive examples as in the propositional case� The examples are encoded

as atomic formulae �for example �hs � octagon� bs � octagon� sm � no� ho �

sword� jc � red� ti � yes� is represented as the atom monk�octagon	 octagon	 no	

sword	 red	 yes� �� The generalizations are implemented by replacing constants by

variables �antiuni�cation� �� is the anonymous variable that matches everything��

To identify the target concept we use the same technique as in the propositional

case � �ltering out nodes based on a threshold for the negative coverage� Thus the

two successors of the root in Figure � form the original MONK� theory which is

���� correct�

Figure  shows another concept hierarchy generated from a set of instances

of the popular append predicate de�ning list concatenation� The leaves of the

concept hierarchy show the set of example E generated from the append theory

�for example append���� ��� ��� ��� ��� �� �� ��� means that appending lists ��� �� and

��� �� results in ��� �� �� ���� The two immediate successors of the root �app��Aj
�� �Aj
�

and app���� A�A�� split E into two classes that re�ect the two major cases in the

append theory �the base case and the recursive clause�� Thus they provide ����

accuracy with respect to this theory�
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Fig� �� Concept hierarchy built upon instances of the append predicate�


�
� Horn clauses

A clause C is a disjunction �or set� of literals	 i�e� C � L��L������Ln	 where Li is an

atom or negated atom� The language of Horn clauses restricts the number of positive

literals �not negated atoms� to at most one� This allows us to use another notation

for Horn clauses used also in the language Prolog	 which is A � �B�� B�� ���� Bn��	

where A is the positive one and B�� B�� ���� Bn�� are all negative literals among

L� lorL� � ��� � Ln�

Within the language of Horn clauses we use ��subsumption�based lgg �the con�

structive relation ��� and logical implication �semantic entailment� for the semantic

relation ���

De�nition � ���Subsumption�� A clause a ��subsumes clause b	 denoted a �� b	

if there exists a substitution �	 such that a� � b�

Under ��subsumption the set of Horn clauses with same heads is a semi�lattice�

Hereafter we show that ��subsumption and logical implication can be used to de�ne

correct height function on this semi�lattice�

De�nition �� �Model�� A set of ground literals which does not contain a com�

plementary pair is called a model� Let M be a model	 c � a clause	 and C � the set

of all ground clauses obtained by replacing the variables in c by ground terms� M

is a model of c i� each clause in C contains at least one literal from M �

De�nition �� �Semantic entailment�� Let f� and f� be well�formed formulae�

f� semantically entails f�	 denoted f� j� f� �or f� �j� f�� i� every model of f� is a

model of f��

Corollary �� Let a and b be clauses such that a �� b� Then Sa � Sb and

jSaj � jSbj�



memb(A,[A]) :- [memb(A,[3,A])]

memb(2,[2])

memb(1,[1])

memb(A,[B,C|D]) :- 
[memb(A,[A]), 

memb(A,[C|D]), 
memb(A,[3,A])]

memb(1,[3,1])

memb(1,[2,3,1])

memb(2,[3,2])

memb(A,[A]) :- []

memb(b,[b])

memb(a,[a])

memb(A,[B,A|C]) :- 
[memb(A,[A]), 
memb(a,[a|C]), 
memb(A,[A|C])]

memb(a,[b,a,b])

memb(b,[c,b])

memb(A,[B,C|D]) :- 
[memb(A,[C|D]), 

memb(A,[A])]

memb(A,[A|B]) :- []

memb(a,[a,b])

memb(A,[B|C]) :- []

Fig� �� Concept hierarchy built upon instances of the member predicate�

Proof� Let a and b be clauses and let a ��subsumes b� According to De�nitions ��

and �� a semantically entails b	 i�e� a �j� b� Then according to De�nition � Sa � Sb
and jSaj � jSbj� �

Now we will show that the two assumptions of Theorem � hold�

�� Let a and b be clauses and let a �� b� Then by Corollary � jSaj � jSbj�

�� Let d � supfa� bg w�r�t� ��� Then a �� d	 b �� d	 and by Corollary �

jSdj � jSaj and jSdj � jSbj� Further	 we will show that actually jSdj � jSaj and

jSdj � jSbj� First	 we assume that for any two clauses c� and c� if Sc� � Sc�
then c� � c�� Thus	 in fact instead of clauses we use equivalence classes of

clauses w�r�t� �j�� Let x � Sa�Sb �symmetric di�erence�� Assume now that

x � Sd� Then by Corollary � Sd � Sa and Sd � Sb	 that is x � Sa � Sb which

is a contradiction� Hence x �� Sd	 i�e� Sd � Sa and Sd � Sb� �

For illustration of our approach within the domain of Horn clauses we use ��

instances of themember predicate and supply them to our algorithm� Figure � shows

the complete concept hierarchy built upon this set of examples� The two successors

of the top element form the well�known de�nition of the member predicate �the

recursive clause contains a redundant literal��

A major problem in applying our algorithm to Horn clauses is the clause reduc�

tion� This is because although �nite the length of the lgg� of n clauses can grow

exponentially with n� Some techniques of avoiding this problem are proposed in ��

By placing certain restrictions on the hypothesis language the number of literals in



the lgg� clause can be limited by a polynomial function� For the above experiment

we use ij�determinate clauses �actually ���determinate��

�� Related work

The algebraic approach to inductive learning is a very natural way to study the

generalization and specialization hierarchies in ML� These hierarchies represent hy�

pothesis spaces that in most cases are partially ordered sets under some generality

ordering� One of the �rst and most popular works within this approach is the Ver�

sion Space framework �� In this framework the space of all correct conjunctive

hypotheses is maintained by using the boundary sets S and G	 representing cor�

respondingly the most speci�c and most general hypotheses� The version space is

actually an equivalence class of hypotheses with respect to the inductive task con�

ditions	 i�e� covering all positive examples and no negative ones� Thus the goal of

the system is by acquiring more examples to reduce this class eventually to a single

hypothesis�

In the presence of background knowledge and in case of more complex hypothe�

sis languages usually the more general approach of re�nement operators is applied�

The re�nement operators are constructive means to build generalizations or spe�

cializations of hypotheses with respect to some generality ordering� In contrast to

the Version Space approach re�nement operators are used to search the hypothesis

space containing not only correct �not covering negative examples� and complete

�covering all positive examples� hypotheses� Thus is the case of top�down re�ne�

ment the system starts from the most general hypothesis and further specializes it

in order to avoid covering of negative examples� Conversely the upward re�nement

operators are used to generalize an initial too speci�c hypothesis in order to ensure

that it covers as many as possible positive examples� The �rst study of re�nement

operators is ��	 where the so called Model Inference System is introduced� This sys�

tem performs downward re�nement of clauses based on ��subsumption ordering� An

in�depth overview of the re�nement operators used in inductive logic programming

can be found in ���

Other re�nement operators used in ML are those that take as input two hypothe�

ses and produce their common generalization or specialization� The most popular

among these is the least general generalization �lgg� operator which given two hy�

potheses build their most speci�c common generalization� The existence of an lgg

in a hypothesis space �a partially ordered set� directly implies that this space is a

semi�lattice� Consequently some algebraic notions as �niteness	 modularity	 metrics

etc� can be used to investigate the properties of the hypothesis space� A complete

study of least generalizations and greatest specializations within the language of

clauses can be found in ���

Lgg
s exist for most of the languages commonly used in ML� However all practi�

cally applicable lgg
s �i�e� computable� are based on syntactical ordering relations�

A relation over hypotheses is syntactical if it does not account for the background



knowledge and for the coverage of positive�negative examples� For example drop�

ping condition for nominal attributes	 instance relation for atomic formulae and

��subsumption for clauses are all syntactical relations� On the other hand the eval�

uation of the hypotheses produced by an lgg operator is based on their coverage

of positive�negative examples with respect to the background knowledge	 i�e� it is

based on semantic relations �in the sense of the inductive task�� This discrepancy

is a source of many problems in ML	 where overgeneralization is the most di�cult

one�

There exists a general semantic relation over hypotheses in all languages� It

can be de�ned by the set inclusion relation between the sets of examples covered

by the hypotheses� In �� it is called empirical subsumption relation� The empirical

subsumption is a preorder and can be easily extended to a partial order by using

the equivalence classes as elements� Unfortunately the corresponding lgg does not

exists in the general case �actually the intersection of two sets is their lgg	 however

it does not always have an explicit representation in the underlying language�� In
�� the empirical subsumption is used for reducing the class of equivalent hypothe�

ses under the corresponding syntactical relation� Generally this kind of semantic

relation is used as a preference criterion for evaluation of the hypotheses generated

by re�nement operators or lgg
s based on syntactical relations�

Our approach in fact also uses empirical subsumption	 however we make a step

further and formally de�ne a distance measure to make use of the empirical sub�

sumption to evaluate the similarity between hypotheses� This allows us to integrate

consistently metric�based and similarity�based approaches to building concept hier�

archies in ML�

�� Concluding remarks

The paper is an attempt to combine theoretical and practical research in ML� We use

basic results from lattice theory to develop a uni�ed inductive learning framework�

We also introduce an algorithm and illustrate by examples its application in two

areas of ML � conceptual clustering and concept learning� Compared to similar

ones our approach has two basic advantages�

� It is language independent	 i�e� it can be applied both within propositional

�attribute�value� languages and within �rst order languages�

� It allows consistent integration of generalization operators with semantic dis�

tance measures�

Clearly more theoretical and practical work is needed to investigate the advan�

tages and drawbacks of our approach� In this respect we see the following directions

for future work�

� Particular attention should be paid to the clause reduction problem when

using the language of Horn clauses� Other lgg operators	 not based on ��

subsumption should be considered too�



� The practical learning data often involve numeric attributes� Proper relations	

lgg
s and covering functions should be investigated in order to extend the

approach for handling numeric data�

� Though the algorithm is well founded it still uses heuristics� This is because

building the complete lattice is exponential and we avoid this by employing

a hill�climbing strategy �choosing a single minimal element in Step ��� Ob�

viously this leads to incompleteness� Therefore other strategies should be

investigated or perhaps the semantic relation should be re�ned to incorporate

these additional heuristics�

� Finally	 more experimental work needs to be done to investigate the behavior

of the algorithm in real domains �involving large amount of xamples and

noise��
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